Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T16:10:46.608Z Has data issue: false hasContentIssue false

Evolution of Glyphosate-Resistant Johnsongrass (Sorghum halepense) in Glyphosate-Resistant Soybean

Published online by Cambridge University Press:  20 January 2017

Martin M. Vila-Aiub*
Affiliation:
IFEVA–CONICET–Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, Buenos Aires (1417), Argentina
Maria C. Balbi
Affiliation:
Monsanto Argentina, Fontezuela Research Station, Provincia de Buenos Aires, Ruta 8 km 214
Pedro E. Gundel
Affiliation:
IFEVA–CONICET–Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, Buenos Aires (1417), Argentina
Claudio M. Ghersa
Affiliation:
IFEVA–CONICET–Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, Buenos Aires (1417), Argentina
Stephen B. Powles
Affiliation:
WAHRI–School of Plant Biology, The University of Western Australia (UWA), 35 Stirling Hwy, Crawley (6009), WA, Australia
*
Corresponding author's E-mail: vila@ifeva.edu.ar

Abstract

In Argentinean crop fields, weed control is mainly achieved by intense use of glyphosate as a nonselective and/or selective herbicide. Glyphosate use is very high as more than 95% of the 16 million ha soybean crop consists of glyphosate-resistant cultivars, always treated with this herbicide. From initial success, inconsistent glyphosate control of Johnsongrass, an invading C4 perennial grass of soybean crops, has become evident to producers from northern Argentina over the last 3 yr. Prior to this, glyphosate provided good control. This study evaluated the nature of these recurrent glyphosate failures in Johnsongrass. Experiments conducted with Johnsongrass plants obtained from seed and rhizome phytomers collected from fields with intense glyphosate use history showed that these populations showed differential survival and biomass productivity when glyphosate treated than Johnsongrass plants obtained from similar propagules collected from field sites with no history of glyphosate use. This empirical evidence establishes that the Johnsongrass survival in glyphosate-treated transgenic soybean fields from northern Argentina is due to evolved glyphosate resistance.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Argentina Department of Agriculture 2007. http://www.sagpya.mecon.gov.ar. Accessed: January 2007.Google Scholar
Baylis, A. D. 2000. Why glyphosate is a global herbicide: strengths, weaknesses and prospects. Pest Manag. Sci. 56:299308.3.0.CO;2-K>CrossRefGoogle Scholar
Benech-Arnold, R. L., Fenner, M., and Edwards, P. J. 1992. Changes in dormancy level in Sorghum halepense seeds induced by water stress during seed development. Funct. Ecol. 6:596605.Google Scholar
Benech-Arnold, R. L., Ghersa, C. M., Sánchez, R. A., and García-Fernández, A. E. 1988. The role of fluctuating temperatures in the germination and establishment of Sorghum halepense (L.) Pers. Regulation of germination under leaf-canopies. Funct. Ecol. 2:311318.Google Scholar
Benech-Arnold, R. L., Ghersa, C. M., Sánchez, R. A., and Insausti, P. 1990. Temperature effects on dormancy release and germination rate in Sorghum halepense (L.) Pers. seeds: a quantitative analysis. Weed Res. 30:8189.CrossRefGoogle Scholar
Celarier, R. P. 1958. Cytotaxonomic notes on the subsection Halepensia of the genus Sorghum . Bull. Torr. Bot. Club. 85:4962.Google Scholar
Dweikat, I. 2005. A diploid, interspecific, fertile hybrid from cultivated sorghum, Sorghum bicolor, and the common Johnsongrass weed Sorghum halepense . Mol. Breed. 16:93101.Google Scholar
Ghersa, C. M., Benech-Arnold, R. L., and Martínez-Ghersa, M. A. 1992. The role of fluctuating temperatures in germination and establishment of Sorghum halepense. Regulation of germination at increasing depths. Funct. Ecol. 6:460468.CrossRefGoogle Scholar
Ghersa, C. M. and Martínez-Ghersa, M. A. 1991. A field method for predicting yield losses in maize caused by Johnsongrass (Sorghum halepense). Weed Technol. 5:279285.Google Scholar
Ghersa, C. M., Martínez-Ghersa, M. A., Satorre, E. H., Van Esso, M. L., and Chichotky, G. 1993. Seed dispersal, distribution and recruitment of seedlings of Sorghum halepense (L.) Pers. Weed Res. 33:7988.Google Scholar
Ghersa, C. M., Satorre, E. H., and Van Esso, M. L. 1985. Seasonal pattern of Johnsongrass seed production in different agricultural systems. Israel J. Bot. 34:2430.Google Scholar
Ghersa, C. M., Satorre, E. H., Van Esso, M. L., Pataro, A., and Elizagaray, R. 1990. The use of thermal calendar models to improve the efficiency of herbicide applications in Sorghum halepense (L.) Pers. Weed Res. 30:153160.Google Scholar
Heap, I. 2007. International Survey of Herbicide Resistant Weeds. http://www.weedscience.org. Accessed: May 2007.Google Scholar
Hoang-Tang, , and Liang, G. H. 1988. The genomic relationship between cultivated sorghum [Sorghum bicolor (L.) Moench] and Johnsongrass [Johnsongrass (L.) Pers.]: a re-evaluation. Theor. Appl. Gen. 76:277284.Google Scholar
Holm, L., Plunknett, D. L., Poncho, J. V., and Herberger, J. P. 1977. The World's Worst Weeds: Distribution and Biology. Honolulu (HI) University Press of Hawaii. 609.Google Scholar
James, C. 2006. Executive Summary of Global Status of Commercialized Biotech/GM Crops: 2006. Ithaca, NY ISAAA Briefs No. 34.Google Scholar
Leguizamón, E. S. 1986. Seed survival and patterns of seedling emergence in Sorghum halepense (L.) Pers. Weed Res. 26:397403.Google Scholar
Maxwell, B. D. and Mortimer, A. M. 1994. Selection for herbicide resistance. Pages 126. in Powles, S.B., Holtum, J.A.M. eds. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL Lewis.Google Scholar
McWhorter, C. G. 1971. Introduction and spread of Johnsongrass in the United States. Weed Sci. 5:496500.Google Scholar
Owen, M. D. K. and Zelaya, I. A. 2005. Herbicide-resistant crops and weed resistance to herbicides. Pest Manag. Sci. 61:301311.Google Scholar
Powles, S. B., Lorraine-Colwill, D. F., Dellow, J. J., and Preston, C. 1998. Evolved resistance to glyphosate in rigid ryegrass (Lolium rigidum) in Australia. Weed Sci. 46:604607.Google Scholar
Powles, S. B. and Preston, C. 2006. Evolved glyphosate resistance in plants: biochemical and genetic basis of resistance. Weed Technol. 20:282289.CrossRefGoogle Scholar
Powles, S. B., Preston, C., Bryan, I. B., and Jutsum, A. R. 1997. Herbicide resistance: impact and management. Adv. Agron. 58:5793.Google Scholar
Powles, S. B. and Wilcut, J. W. 2007. Review of evolved glyphosate resistant weeds around the world and lessons to be learnt. 2007. Pest Manag. Sci. In press.Google Scholar
Satorre, E. H., Ghersa, C. M., and Pataro, A. M. 1985. Prediction of Sorghum halepense (L.) Pers. rhizome sprout emergence in relation to air temperature. Weed Res. 25:103109.Google Scholar
Scopel, A. L., Ballaré, C. L., and Ghersa, C. M. 1988. The role of seed reproduction in the population ecology of Sorghum halepense in maize crops. J. Appl. Ecol. 25:951962.Google Scholar
Sokal, R. R. and Rohlf, F. J. 1969. Biometry. 1st ed. San Francisco W. H. Freeman. 797.Google Scholar
Van Esso, M. L., Ghersa, C. M., and Soriano, A. 1986. Cultivation effects on the dynamics of a Johnsongrass seed population in the soil profile. Soil Tillage. 6:325335.Google Scholar
Vila-Aiub, M. M., Vidal, R. A., Balbi, M. C., Gundel, P. E., Trucco, F., and Ghersa, C. M. 2007. Glyphosate-resistant weeds of South American cropping systems: an overview. Pest Manag. Sci. In press.Google Scholar
Woodburn, A. T. 2000. Glyphosate: production, pricing and use world-wide. Pest Manag. Sci. 56:309312.3.0.CO;2-C>CrossRefGoogle Scholar