Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T02:24:50.626Z Has data issue: false hasContentIssue false

Effect of imazamox, fomesafen, and acifluorfen soil residue on rotational crops

Published online by Cambridge University Press:  12 June 2017

Hélio T. Prates
Affiliation:
Nacional Research Center of Maize and Sorghum, Caixa Postal 151, 357001-970, Sete Lagoas, MG, Brazil
Christian L. M. Falcão
Affiliation:
University of Goiás, Goiânia, GO, Brazil
Marcio M. V. Rezende
Affiliation:
University of Goiás, Goiânia, GO, Brazil

Abstract

Field studies were conducted at Goiânia, GO, Brazil, on an Oxisol (clayey, kaolinitic, isothermic, Typic Haplustox) and at Jussara, GO, Brazil, on an Oxisol (loamy sand, kaolinitic, isothermic, Typic Haplustox) during 1995 and 1996 to determine the carryover effect of fomesafen, imazamox, and acifluorfen, applied to edible bean, on rotational crops (maize, sorghum, rice, and millet) and to estimate the level of soil residues under Brazilian Savanna conditions. Averaged across locale, year, and rate, fomesafen dissipation time (DT50) (37.5 d) was longer than acifluorfen (27.5 d) and imazamox (25.9 d). For both locations, soil herbicide persistence (average of herbicides) was longer in 1995 than in 1996. This was due to higher soil moisture content in 1996. The sensitivity of rotational crops to fomesafen and imazamox residues was, in decreasing order: sorghum, corn, millet, and rice, and for acifluorfen: sorghum, corn, rice, and millet. The period between herbicide application and rotational crop planting (PAP) varied in agreement with the sensitivity of rotational crops to herbicide residues in soil and the persistence of the herbicide. Considering both location and year, the PAP for fomesafen (250 g ai ha−1) ranged from 69 to 132 d for corn, 114 to 179 d for sorghum, 29 to 95 d for rice, and 52 to 111 d for millet; the PAP for imazamox (40 g ai ha−1) ranged from 68 to 111 d for corn, 78 to 139 d for sorghum, 25 to 75 d for rice, and 40 to 102 d for millet; and the PAP for acifluorfen (170 g ai ha−1) ranged from 56 to 89 d for corn, 96 to 139 d for sorghum, 61 to 95 d for rice, and 43 to 82 d for millet.

Type
Soil, Air, and Water
Copyright
Copyright © 1998 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Barnes, C. J., Goetz, A. J., and Lavy, T. L. 1989. Effects of imazaquin residues on cotton (Gossypium hirsutum). Weed Sci. 37: 820824.Google Scholar
Basham, G. W. and Lavy, T. L. 1987. Microbial and photolytic dissipation of imazaquin in soil. Weed Sci. 35: 865870.Google Scholar
Cantwell, J. R., Lieb, R. A., and Slife, F. W. 1989. Biodegradation characteristics of imazaquin and imazethapyr. Weed Sci. 37: 815819.Google Scholar
Cobucci, T. 1996. Avaliação Agronômica Dos Herbicidas Fomesafen e Bentazon Efeito de seus Resíduos No Ambiente, No Sistema Irrigado Feijão-milho. . Universidade Federal de Viçosa, Viçosa. 106 p.Google Scholar
Goetz, A. J., Lavy, T. L., and Gbur, E. E. 1990. Degradation and field persistence of imazethapyr. Weed Sci. 38: 421428.Google Scholar
Goetz, A. J., Wehtje, G., Walker, R. H., and Hajek, B. 1986. Soil solution and mobility characterization of imazaquin. Weed Sci. 34: 788793.Google Scholar
Harvey, B. R., Zinner, C.K.J., White, R. D., and Hill, I. R. 1980. PP021: Degradation in Soil Under Aerobic and Flooded Conditions in the Laboratory. (Report, RJ0130B.) London: Imperial Chemicals Industry. 5 p.Google Scholar
Johnson, D. H. and Talbert, R. E. 1993. Imazaquin, chlorimuron, and fomesafen may injure rotational vegetables and sunflower (Helianthus annuus). Weed Technol. 7: 573577.Google Scholar
Krausz, R. F., Kapusta, G., and Matthews, J. L. 1994. Soybean (Glycine max) and rotational crop response to PPI chlorimuron, clomazone, imazaquin, and imazethapyr. Weed Technol. 8: 224230.Google Scholar
Loux, M. M., Liebl, R. A., and Slife, F. W. 1989a. Availability and persistence of imazaquin, imazethapyt, and clomazone in soil. Weed Sci. 37: 259267.Google Scholar
Loux, M. M., Liebl, R. A., and Slife, F. W. 1989b. Adsorption of imazaquin and imazethapyr on soils, sediments, and selected adsorbents. Weed Sci. 37: 712718.Google Scholar
Monks, C. D. and Banks, P. A. 1991. Rotational crops response to chlorimuron, clomazone, and imazaquin applied the previous year. Weed Sci. 39: 629633.Google Scholar
Oyamada, M. and Kuwatsuka, S. 1988. Effects of soil properties and conditions on the degradation of three diphenylether herbicides in flooded soils. J. Pestic. Sci. 13: 99105.Google Scholar
Peterson, M. A. and Arnold, W. E. 1985. Response of rotational crops to soil residues of chlorsulfuron. Weed Sci. 34: 131136.Google Scholar
Ritter, R. L., Harris, T. C., and Kaufman, L. M. 1988. Chlorsulfuron and metsulfuron residues on double-cropped soybeans (Glycine max). Weed Technol. 2: 4952.Google Scholar
Santos, J.G.M. 1991. Controle Químico de Plantas Daninhas na Cultura do Feijão (Phaseolus vulgaris L.), No Inverno. . Universidade Federal de Viçosa, Viçosa. 86 p.Google Scholar
Silva, A. A., Ferreira, F. A., Brito, S. A., and Santos, J.G.M. 1995. Efeito Residual de Imazamox and Imazethapyr em Latossolo Roxo. in Congresso Brasileiro da Ciěncia das Plantas Daninhas. Florianópolis: Sociedade Brasileira de Controle de Plantas Daninhas. p. 326.Google Scholar
Thirunarayanan, K., Zimdahl, R. L., and Smika, D. E. 1995. Chlorsulfuron adsorption and degradation in soil. Weed Sci. 33: 558563.CrossRefGoogle Scholar
Weber, J. B. 1993. Ionization and sorption of fomesafen and atrazine by soils and soil constituents. Pestic. Sci. 39: 3138.Google Scholar
Weissler, M. S. and Poole, N. J. 1982. Mobility of Fomesafen and Degradation Products in Soil Columns. (Report, RJ0241B.) London: Imperial Chemicals Industry. 3 p.Google Scholar
Wiese, A. F., Wood, M. L., and Chenault, E. W. 1988. Persistence of sulfonylureas in Pullman clay loam. Weed Technol. 2: 251256.Google Scholar
Wixson, M. B. and Shaw, D. R. 1992. Effects of soil-applied AC 263,222 on crops rotated with soybean (Glycine max). Weed Technol. 6: 276279.Google Scholar