Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-18T10:06:08.268Z Has data issue: false hasContentIssue false

Effect of Formulation and Application Time of Day on Detecting Dicamba in the Air under Field Conditions

Published online by Cambridge University Press:  20 January 2017

Thomas C. Mueller*
Affiliation:
Department of Plant Sciences, University of Tennessee, 252 Ellington Plant Sciences Bldg., 2431 Joe Johnson Dr., Knoxville, TN 37996
Daniel R. Wright
Affiliation:
Monsanto Company, 800 North Lindbergh, St. Louis, MO
Kirk M. Remund
Affiliation:
Monsanto Company, 800 North Lindbergh, St. Louis, MO
*
Corresponding author's E-mail: tmueller@utk.edu

Abstract

The development of dicamba-tolerant and other auxin-tolerant crops will enable the use of these effective herbicides in soybean and cotton at application timings such as at planting or over-the-top that are not currently possible. This research examined the effect of various factors on detection of postapplication amounts of dicamba in the air under field conditions by coupling a sample collection system with advanced chemical analysis of those samples. The quantity of dimethylamine salt of dicamba that was detected within 48 hr after application was two times greater (P < 0.05) than the quantity of diglycoamine salt formulation based on field studies in 2009. Regardless of application timing, the amount of detected dicamba was greatest during the 0 to 12 hr time period after application. However, the total detected after 48 hr was less for evening applications (5 micrograms [µg]) compared with midday (17 µg) or morning (14 µg) applications based on 2010 field trials. Average ambient air temperature (and other weather variables) correlated with higher detection levels of dicamba in the air in the field.

Type
Soil, Air, and Water
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Al-Khatib, K. and Peterson, D. 1999. Soybean (Glycine max) response to simulated drift from selected sulfonylurea herbicides, dicamba, glyphosate, and glufosinate. Weed Technol. 13:264270.Google Scholar
Altom, J. D. and Stritzke, J. F. 1973. Degradation of dicamba, picloram, and four phenoxy herbicides in soils. Weed Sci. 21:556560.Google Scholar
Behrens, M. R., Mutlu, N., Chakraborty, S., Dumitru, R., Jian, W. Z., LaVallee, B. J., Herman, P. L., Clemente, T. E., and Weeks, D. P. 2007. Dicamba resistance: enlarging and preserving biotechnology-based weed management systems. Science. 316:11851188.Google Scholar
Behrens, R. and Lueschen, W. E. 1979. Dicamba volatility. Weed Sci. 27:486493.Google Scholar
Briand, O., Bertrand, F., Seux, R., and Millet, M. 2002. Comparison of different sampling techniques for the evaluation of pesticide spray drift in apple orchards. Sci. Tot. Environ. 288:199213.Google Scholar
Bui, Q. D., Womac, A. R., Howard, K. D., Mulrooney, J. E., and Amin, M. K. 1998. Evaluations of samplers for spray drift. Trans. ASAE. 41:3741.Google Scholar
Burgoyne, T. W. and Hites, R. A. 1993. Effects of temperature and wind direction on the atmospheric concentrations of alpha-endosulfan. Environ. Sci. Technol. 27:910914.Google Scholar
Busey, P., Broschat, T. K., and Johnson, D. L. 2003. Injury to landscapes and vegetable plants by volatile turf herbicides. Hort. Technol. 13:650652.Google Scholar
Coupe, R. H., Manning, M. A., Foreman, W. T., Goolsby, D. A., and Majewski, M. S. 2000. Occurrence of pesticides in rain and air in urban and agricultural areas of Mississippi, April–September 1995. Sci. Tot. Environ. 248:227240.CrossRefGoogle Scholar
Egan, J. F. and Mortensen, D. A. 2012. Quantifying vapor drift of dicamba herbicides applied to soybean. Environ. Toxic. Chem. 31:10231031.Google Scholar
Feng, P. C. C., Martino-Catt, S., and Padgette, S. R. 2012. Inhibitor of 5-enolpyruvyl shikimate 3-phosphate synthase. Pages 406422 in Krämer, W., Schirmer, U., Jeschke, P., and Witschel, M., eds. Modern Crop Protection Compounds. 2nd ed., Vol. 1. Weinheim, Germany Wiley-VCH.Google Scholar
Harrison, R. M., Smith, D. J. T., and Luhana, L. 1996. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environ. Sci. Technol. 30:825832.Google Scholar
Hastie, T., Tibshirani, R., and Friedman, J. 2008. The elements of statistical learning. New York, New York Springer. 763 p.Google Scholar
Hayward, S. J., Gouin, T., and Wania, F. 2010. Comparison of four active and passive sampling techniques for pesticides in air. Environ. Sci. Technol. 44:34103416.Google Scholar
Hill, B. B., Harker, K. N., Hasselback, P., Inaba, D. J., Byers, S. D., and Moyer, J. R. 2002a. Herbicides in Alberta rainfall as affected by location, use and season: 1999 to 2000. Water Qual. Res. J. Canada. 37:515542.Google Scholar
Hill, B. D., Harker, K. N., Hasselback, P., Moyer, J. R., Inaba, D. J., and Byers, S. D. 2002b. Phenoxy herbicides in Alberta rainfall: Potential effects on sensitive crops. Can. J. Plant Sci. 82:481484.Google Scholar
Klanova, J., Eupr, P., Kohoutek, J., and Harner, T. 2008. Assessing the influence of meteorological parameters on the performance of polyurethane foam-based passive air samplers. Environ. Sci. Technol. 42:550555.Google Scholar
Martin, J. W., Muir, D. C. G., Moody, C. A., Ellis, D. A., Kwan, W. C., Solomon, K. R., and Mabury, S. A. 2002. Collection of airborne fluorinated organics and analysis by gas chromatography/chemical ionization mass spectrometry. Anal. Chem. 74:584590.Google Scholar
Milliken, G. A. and Johnson, D. E. 2002. Analysis of messy data volume III. Analysis of covariance. New York, New York Chapman Hall/CRC. 605 p.Google Scholar
Prueger, J. H., Gish, T. J., McConnell, L. L., McKee, L. G., Hatfield, J. L., and Kustas, W. P. 2005. Solar radiation, relative humidity, and soil water effects on metolachlor volatilization. Environ. Sci. Technol. 39:52195226.Google Scholar
Ramaprasad, J., Tsai, M. Y., Elgethun, K., Hebert, V. R., Felsot, A., Yost, M. G., and Fenske, R. A. 2004. The Washington aerial spray drift study: assessment of off-target organophosphorous insecticide atmospheric movement by plant surface volatilization. Atmos. Environ. 38:57035713.Google Scholar
Sanusi, A., Millet, M., Mirabel, P., and Wortham, H. 1999. Gas-particle partitioning of pesticides in atmospheric samples. Atmos. Environ. 33:49414951.Google Scholar
Sciumbato, A. S., Chandler, J. M., Senseman, S. A., Bovey, R. W., and Smith, K. L. 2004. Determining exposure to auxin-like herbicides. II. practial application to quantify volatility. Weed Technol. 18:11351142.Google Scholar
Strachan, S. D., Casini, M. S., Heldreth, K. M., Scocas, J. A., Nissen, S. J., Bukun, B., Lindenmeyer, R. B., Shaner, D. L., Westra, P., and Brunk, G. 2010. Vapor movement of synthetic auxin herbicides; aminocyclopyrachlor, aminocyclopyrachlor-methyl ester, dicamba, and aminopyralid. Weed Sci. 58:103108.Google Scholar
Waite, D. T., Bailey, P., Sproull, J. F., Quiring, D. V., Chau, D. F., Bailey, J., and Cessna, A. J. 2005. Atmospheric concentrations and dry and wet deposits of some herbicides currently used on the Canadian Prairies. Chemosphere. 58:693703.Google Scholar
Waite, D. T., Cessna, A. J., Grover, R., Kerr, L. A., and Snihura, A. D. 2004. Environmental concentrations of agricultural herbicides in Saskatchewan, Canada: bromoxynil, dicamba, diclofop, MCPA, and trifluralin. J. Environ. Qual. 33:16161628.Google Scholar
Waite, D. T., Grover, R., Westcott, N. D., Irvine, D. G., Kerr, L. A., and Sommerstad, H. 1995. Atmospheric deposition of pesticides in a small southern Saskatchewan watershed. Environ. Toxic. Chem. 14:11711175.Google Scholar
Yao, Y., Tuduri, L., Harner, T., Blanchard, P., Waite, D., Poissant, L., Murphy, C., Belzer, W., Aulagnier, F., Li, Y., and Sverko, E. 2006. Spatial and temporal distribution of pesticide air concentrations in Canadian agricultural regions. Atmos. Environ. 40:43394351.Google Scholar