Skip to main content Accessibility help
×
Home
Hostname: page-component-6f6fcd54b-6rwzl Total loading time: 0.243 Render date: 2021-05-11T14:59:11.800Z Has data issue: true Feature Flags: {}

Influence of Application Variables on the Foliar Efficacy of Saflufenacil on Horseweed (Conyza canadensis)

Published online by Cambridge University Press:  20 January 2017

Tracy G. Mellendorf
Affiliation:
Former Graduate Student, Researcher, Researcher and Professor, Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901
Julie M. Young
Affiliation:
Former Graduate Student, Researcher, Researcher and Professor, Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901
Joseph L. Matthews
Affiliation:
Former Graduate Student, Researcher, Researcher and Professor, Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901
Bryan G. Young
Affiliation:
Former Graduate Student, Researcher, Researcher and Professor, Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901
Corresponding
E-mail address:

Abstract

Greenhouse studies were conducted to determine the influence of spray-solution pH, adjuvant, light intensity, temperature, and glyphosate on the efficacy of saflufenacil on horseweed. Control of glyphosate-resistant horseweed from saflufenacil alone was greatest with a spray-solution pH of 5, compared with pH 7 or 9. However, when glyphosate was added to saflufenacil, similar GR50 values were measured with spray solutions adjusted to pH 5 and 9, and horseweed control at pH 9 was 38% greater than at pH 7. The efficacy of saflufenacil on horseweed was 36% greater when crop oil concentrate was used as an adjuvant compared with nonionic surfactant, regardless of the addition of glyphosate or the sensitivity of the horseweed population to glyphosate (resistant vs. susceptible). The addition of glyphosate to low rates of saflufenacil increased control over saflufenacil applied alone on glyphosate-susceptible and -resistant horseweed. Saflufenacil activity was greater under low light intensity (300 μmol m−2 s−1) than high light intensity (1,000 μmol m−2 s−1). Although initial horseweed control was greater under high temperature (27 C) compared with low temperature (10 C), by 21 d after treatment horseweed dry weight was similar from saflufenacil applied under high and low temperatures.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

Current address: Department of Botany and Plant Pathology, 915 West State Street, West Lafayette, IN 47907.

References

Bellinder, RR, Arsenovic, M, Shah, DA, Rauch, BJ (2003) Effect of weed growth stage and adjuvant on the efficacy of fomesafen and bentazon. Weed Sci. 51:10161021 CrossRefGoogle Scholar
Fausey, J C, Penner, D, Renner, KA (1999) Adjuvant effects on CGA-248757 and flumiclorac efficacy and crop tolerance. Weed Technol. 13:783790 CrossRefGoogle Scholar
Fausey, JC, Renner, KA (2001) Environmental effects on CGA-248757 and flumiclorac efficacy/soybean tolerance. Weed Sci. 49:668674 CrossRefGoogle Scholar
Frihauf, JC, Stahlman, PW, Geier, PW (2010) Winter wheat and weed response to postemergence saflufenacil alone and in mixtures. Weed Technol. 24:262268 CrossRefGoogle Scholar
Gibson, KD, Johnson, WD, Hillger, DE (2005) Farmer perceptions of problematic corn and soybean weeds in Indiana. Weed Technol. 19:10651070 CrossRefGoogle Scholar
Green, JM, Hale, T (2005) Increasing and decreasing pH to enhance the biological activity of nicosulfuron. Weed Technol. 19:468475 CrossRefGoogle Scholar
Grossmann, KR, Hutzler, J, Caspar, G, Kwiakowski, J, Brommer, CL (2011) Saflufenacil (Kixor™): biokinetic properties and mechanism of selectivity of a new protoporphyrinogen IX oxidase inhibiting herbicide. Weed Sci. 59:290298 CrossRefGoogle Scholar
Grossmann, KR, Niggeweg, R, Christiansen, N, Looser, R, Ehrhardt, T (2010) The herbicide saflufenacil (Kixor™) is a new inhibitor of protoporphyrinogen IX oxidase activity. Weed Sci. 58:19 CrossRefGoogle Scholar
Heap, IM (2014) International Survey of Herbicide-Resistant Weeds. http://www.weedscience.org. Accessed January 8, 2014Google Scholar
Kells, JJ, Meggitt, WF, Penner, D (1984) Absorption, translocation, and activity of fluazifop-butyl as influenced by plant growth stage and environment. Weed Sci. 32:143149 CrossRefGoogle Scholar
Knezevic, SZ, Datta, A, Scott, J, Klein, RN, Golus, J (2009) Problem weed control in glyphosate-resistant soybean with glyphosate tank mixes and soil-applied herbicides. Weed Technol. 23:507512 CrossRefGoogle Scholar
Matocha, MA, Krutz, LJ, Senseman, SA, Koger, CH, Reddy, KN, Palmer, EW (2006) Spray carrier pH effect of absorption and translocation of trifloxysulfuron in Palmer amaranth (Amaranthus palmeri) and Texasweed (Caperonia palustris). Weed Sci. 54:969973 CrossRefGoogle Scholar
McCormick, RW (1990) Effects of CO2, N2, air, and nitrogen salts on spray solution pH. Weed Technol. 4:910912 CrossRefGoogle Scholar
McWhorter, CG, Jordan, TN (1976) Effects of adjuvant and environment on the toxicity of dalapon to johnsongrass. Weed Sci. 24:257260 CrossRefGoogle Scholar
Mellendorf, TM, Young, JM, Matthews, JL, Young, BG (2013) Influence of plant height and glyphosate on saflufenacil efficacy on glyphosate-resistant horseweed (Conyza canadensis). Weed Technol. 27:463467 CrossRefGoogle Scholar
Nalewaja, JD, Matysiak, R, Szelezniak, E (1994) Sethoxydim response to spray carrier chemical properties and environment. Weed Technol. 8:591597 CrossRefGoogle Scholar
Norris, JL, Shaw, DR, Snipes, CE (2001) Weed control from herbicide combinations with three formulations of glyphosate. Weed Technol. 15:552558 CrossRefGoogle Scholar
Owen, LN, Mueller, TC, Main, CL, Bond, J, Steckel, LE (2011) Evaluating rates and application timings of saflufenacil for control of glyphosate-resistant horseweed (Conyza canadensis) prior to planting no-till cotton. Weed Technol. 25:15 CrossRefGoogle Scholar
Reddy, KN, Singh, M (1992) Organosilicone adjuvant effects of glyphosate efficacy and rainfastness. Weed Technol. 6:361365 CrossRefGoogle Scholar
Ritz, C, Streibig, JC (2005) Bioassay analysis using R. J Stat Software 12.Google Scholar
Roskamp, JM, Turco, RF, Bischoff, M, Johnson, WG (2013) The influence of carrier water pH and hardness on saflufenacil efficacy and solubility. Weed Technol. 27:527533 CrossRefGoogle Scholar
Stahlman, PW, Phillips, WM (1979) Effects of water quality and spray volume on glyphosate phytotoxicity. Weed Sci. 27:3841 CrossRefGoogle Scholar
Starke, RJ, Oliver, LF (1998) Interaction of glyphosate with chlorimuron, fomesafen, imazethapyr, and sulfentrazone. Weed Sci. 46:652660 CrossRefGoogle Scholar
Thompson, WM, Nissen, SJ (2002) Influence of shade and irrigation on the response of corn (Zea mays), soybean (Glycine max), and wheat (Triticum aestivum) to carfentrazone-ethyl. Weed Technol. 16:314318 CrossRefGoogle Scholar
Velini, ED, Trindade, MLB, Barberis, LRM, Duke, SO (2010) Growth regulation and other secondary effects of herbicides. Weed Sci. 58:351354 CrossRefGoogle Scholar
Waggoner, BS, Mueller, TC, Bond, JA, Steckel, LE (2011) Control of glyphosate-resistant horseweed with saflufenacil tank mixtures in no till cotton. Weed Technol. 25:310315 CrossRefGoogle Scholar
Wichert, RA, Bozsa, R, Talbert, RE, Oliver, LR (1992) Temperature and relative humidity effects on diphenylether herbicides. Weed Technol. 6:1924 CrossRefGoogle Scholar
Wills, GD, McWhorter, CG (1981) Effect of environment on the translocation and toxicity of acifluorfen to showy crotalaria (Crotalaria spectabilis). Weed Sci. 29:367401 CrossRefGoogle Scholar
Zabkiewicz, JA (2000) Adjuvants and herbicidal efficacy—present status and future prospects. Weed Res. 40:139149 CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Influence of Application Variables on the Foliar Efficacy of Saflufenacil on Horseweed (Conyza canadensis)
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Influence of Application Variables on the Foliar Efficacy of Saflufenacil on Horseweed (Conyza canadensis)
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Influence of Application Variables on the Foliar Efficacy of Saflufenacil on Horseweed (Conyza canadensis)
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *