Skip to main content Accessibility help
×
Home
Hostname: page-component-59df476f6b-l2s26 Total loading time: 0.296 Render date: 2021-05-17T20:54:19.424Z Has data issue: false Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Article contents

Expression in Plants of a Bacterial Gene Coding for Glyphosate Resistance

Published online by Cambridge University Press:  12 June 2017

Gregory A. Thompson
Affiliation:
Each of the authors holds the title of Principal Scientist, Calgene, Inc., Davis, CA 95616
William R. Hiatt
Affiliation:
Each of the authors holds the title of Principal Scientist, Calgene, Inc., Davis, CA 95616
Daniel Facciotti
Affiliation:
Each of the authors holds the title of Principal Scientist, Calgene, Inc., Davis, CA 95616
David M. Stalker
Affiliation:
Each of the authors holds the title of Principal Scientist, Calgene, Inc., Davis, CA 95616
Luca Comai
Affiliation:
Each of the authors holds the title of Principal Scientist, Calgene, Inc., Davis, CA 95616

Abstract

The target site of glyphosate [N-(phosphonomethyl)glycine] inhibition in plants and bacteria is 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase. Our strategy for developing glyphosate-resistant crops has been to genetically engineer plants with a gene that codes for EPSP synthase with low sensitivity in glyphosate. We cloned such a gene from the aroA locus of a glyphosate-resistant mutagenized strain of Salmonella typhimurium. The enzyme encoded by this gene has a single amino acid change resulting in lower affinity for glyphosate and higher affinity for substrates than either plant or wild-type bacterial counterpart. A chimaeric gene containing the mutant aroA gene behind the octopine synthase promoter was constructed and integrated into Agrobacterium T-DNA vectors. Analysis of gall tissue from Brassica campestris L. (turnip rape) infected with A. tumefaciens K12 containing this chimaera showed mRNA and protein expressed from the bacterial gene; 50% of the total EPSP synthase activity present had kinetic properties of the mutant bacterial enzyme. Tobacco (Nicotiana tabacum L. ‘Xanthi′) plants have been regenerated from cocultivation with A. rhizogenes containing the same construct; analysis indicates expression of the gene and enhanced tolerance to glyphosate.

Type
Research Article
Copyright
Copyright © 1987 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Amrhein, N., Johanning, D., Schab, J., and Schulz, A. 1983. Biochemical basis for glyphosate tolerance in a bacterium and a plant tissue culture. FEBS Lett. 157:191196.CrossRefGoogle Scholar
2. Bickel, H., Palme, L., and Schultz, G. 1978. Incorporation of shikimate and other precursors into aromatic amino acids and phenylquinones of isolated spinach chloroplasts. Phytochemistry 17:119124.CrossRefGoogle Scholar
3. Boocock, M. R. and Coggins, J. R. 1983. Kinetics of 5-enolpyruvylshikimate 3-phosphate synthase inhibition by glyphosate. FEBS Lett. 154:127133.CrossRefGoogle ScholarPubMed
4. Comai, L., Schilling-Cordaro, C., Mergia, A., and Houck, C. M. 1983. A new technique for genetic engineering of Agrobacterium Ti plasmid. Plasmid 10:2130.CrossRefGoogle ScholarPubMed
5. Comai, L., Sen, L. C., and Stalker, D. M. 1983. An altered aroA gene product confers resistance to the herbicide glyphosate. Science 221:370371.CrossRefGoogle ScholarPubMed
6. Comai, L., Facciotti, D., Hiatt, W. R., Thompson, G., Rose, R. E., and Stalker, D. M. 1985. Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature 317:741744.CrossRefGoogle Scholar
7. Gollub, E., Zalkin, H., and Sprinson, D. B. 1967. Correlation of genes and enzymes, and studies on relation of the aromatic pathway in Salmonella . J. Biol. Chem. 242:53235328.Google Scholar
8. Gresshoff, P. M. 1979. Growth inhibition of glyphosate and reversal of its action by phenylalanine and tyrosine. Aust. J. Plant Physiol. 6:177185.CrossRefGoogle Scholar
9. Hiatt, W. R., Comai, L., Huang, L. -J., Rose, R., Thompson, G., and Stalker, D. 1985. Introduction and expression in plants of a glyphosate resistant aroA gene isolated from Salmonella typhimurium . Pages 479488 in Van Vloten-Doting, L., Groot, G.S.P., and Hall, T. C., eds. Molecular Form and Function of the Plant Genome. Plenum Publishing, New York.Google Scholar
10. Mousdale, D. M. and Coggins, J. R. 1984. Purification and properties of 5-enolpyruvyl-shikimate 3-phosphate synthase from seedlings of Pisum sativum L. Planta 160:7883.CrossRefGoogle Scholar
11. Nafziger, E. D., Widholm, J. M., Steinrücken, H. C., and Killmer, J. L. 1984. Selection and characterization of a carrot cell line tolerant to glyphosate. Plant Physiol. 76:571574.CrossRefGoogle ScholarPubMed
12. Rubin, J. L., Gaines, C. G., and Jensen, R. 1984. Glyphosate inhibition of 5-enolpyruvyl-shikimate 3-phosphate synthase from suspension-cultured cells of Nicotiana silvestris . Plant Physiol. 75:839845.CrossRefGoogle Scholar
13. Rogers, S. G., Brand, L. A., Holder, S. B., Sharp, E. S., and Brackin, M. M. 1983. Amplification of the aroA gene from E. coli results in tolerance to the herbicide glyphosate. Appl. Environ. Microbiol. 46:3743.Google Scholar
14. Stalker, D. M., Hiatt, W. R., and Comai, L. 1985. A single amino acid substitution in the enzyme 5-enolpyruvylshikimate 3-phosphate synthase confers resistance to the herbicide glyphosate. J. Biol. Chem. 260:47244728.Google ScholarPubMed
15. Steinrücken, H. C. and Amrhein, N. 1983. 5-Enolpyruvyl-shikimate 3-phosphate synthase of Klebsiella pneumoniae. 2. Inhibition by glyphosate [N-(phosphonomethyl)glycine). Eur. J. Biochem. 143:351357.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Expression in Plants of a Bacterial Gene Coding for Glyphosate Resistance
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Expression in Plants of a Bacterial Gene Coding for Glyphosate Resistance
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Expression in Plants of a Bacterial Gene Coding for Glyphosate Resistance
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *