Skip to main content Accessibility help
×
Home
Hostname: page-component-7ccbd9845f-ktfbs Total loading time: 0.551 Render date: 2023-01-29T06:59:35.834Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Effect of Cry3Bb Bt Corn and Tefluthrin on Postdispersal Weed Seed Predation

Published online by Cambridge University Press:  20 January 2017

Antonio DiTommaso*
Affiliation:
Department of Crop and Soil Sciences, Cornell University, Ithaca, NY 14853
Matthew R. Ryan
Affiliation:
Department of Crop and Soil Sciences, Cornell University, Ithaca, NY 14853
Charles L. Mohler
Affiliation:
Department of Crop and Soil Sciences, Cornell University, Ithaca, NY 14853
Daniel C. Brainard
Affiliation:
Department of Horticulture, Michigan State University, East Lansing, MI 48824
Rachel E. Shuler
Affiliation:
Department of Crop and Soil Sciences, Cornell University, Ithaca, NY 14853
Leslie L. Allee
Affiliation:
Department of Entomology, Cornell University, Ithaca, NY 14853
John E. Losey
Affiliation:
Department of Entomology, Cornell University, Ithaca, NY 14853
*
Corresponding author's E-mail: ad97@cornell.edu

Abstract

Indirect effects of insect control strategies on weed populations are important to consider when developing robust integrated pest management strategies. Weed seed predation rates were investigated in corn managed under three contrasting treatments based on control practices for corn rootworm: (1) the transgenic crop Cry3Bb Bt corn, (2) the broad-spectrum insecticide tefluthrin, and (3) no insecticide control. This 2-yr field study conducted near Ithaca, NY, involved quantifying seed loss from velvetleaf, common lambsquarters, and giant foxtail in arenas with and without vertebrate exclosures. Velvetleaf and giant foxtail were unaffected by the insecticide treatment; however, average seed predation of common lambsquarters was lower in both the Bt corn (11.9%) and insecticide-treated plots (11.8%) compared with control plots (17.5%) that did not receive any insecticide. Seed predation of common lambsquarters was not affected by the vertebrate exclosure. Lower seed predation in the transgenic Bt corn and insecticide treatments was likely due to nontarget effects on carabids (Coleoptera: Carabidae). Although the reduction in seed predation was modest and limited to only one of the three weed species tested, our results highlight the need for greater risk assessment that includes the ecosystem service of weed seed predation when considering insect pest management options.

Type
Weed Management
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Meadowbrook School, Weston, MA 02493.

References

Literature Cited

Albajes, R, López, C, Pons, X (2003) Predatory fauna in cornfields and response to imidacloprid seed treatment. J Econ Entomol. 96:18051813 Google ScholarPubMed
Benbrook, CM (2012) Impacts of genetically engineered crops on pesticide use in the U.S.—the first sixteen years. Environ Sci Eur. 24:113 CrossRefGoogle Scholar
Blake, S, McCracken, DI, Eyre, MD, Garside, A, Foster, GN (2003) The relationship between the classification of Scottish ground beetle assemblages (Coleoptera, Carabidae) and the National Vegetation Classification of British plant communities. Ecography. 26:602616 CrossRefGoogle Scholar
Burkness, EC, Hutchison, WD, Bolin, PC, Bartels, DW, Warnock, DF, Davis, DW (2001) Field efficacy of sweet corn hybrids expressing a Bacillus thuringiensis toxin for management of Ostrinia nubilalis (Lepidoptera: Crambidae) and Helicoverpa zea (Lepidoptera: Noctuidae). J Econ Entomol. 94:197203 Google Scholar
Chen, ZZ, Willson, HR (1996) Species composition and seasonal distribution of carabids (Coleoptera: Carabidae) in an Ohio soybean field. J Kans Entomol Soc. 69:310316 Google Scholar
Cromar, HE, Murphy, SD, Swanton, CJ (1999) Influence of tillage and crop residue on postdispersal predation of weed seeds. Weed Sci. 47:184194 CrossRefGoogle Scholar
Davis, AS, Hill, JD, Chase, CA, Johanns, AM, Liebman, M (2012) Increasing cropping system diversity balances productivity, profitability and environmental health. PLoS ONE. 7:e47149 CrossRefGoogle ScholarPubMed
Davis, AS, Taylor, EC, Haramoto, ER, Renner, KA (2013) Annual postdispersal weed seed predation in contrasting field environments. Weed Sci. 61:296302 CrossRefGoogle Scholar
de la Poza, M, Pons, X, Farinós, GP, López, C, Ortego, F, Eizaguirre, M, Castañera, P, Albajes, R (2005) Impact of farm-scale Bt maize on abundance of predatory arthropods in Spain. Crop Prot. 24:677684 CrossRefGoogle Scholar
Devos, Y, Schrijver, AD, Clercq, PD, Kiss, J, Romeis, J (2012) Bt-maize event MON 88017 expressing Cry3Bb1 does not cause harm to non-target organisms. Transgenic Res. 21:11911214 CrossRefGoogle Scholar
Fernandez-Cornejo, J, Wechsler, S, Livingston, M, Mitchell, L (2014) Genetically Engineered Crops in the United States. U.S. Department of Agriculture, Economic Research Service, ERR-162, February 2014, 60 pGoogle Scholar
Fox, AF, Reberg-Horton, SC, Orr, DB, Moorman, CE, Frank, SD (2013) Crop and field border effects on weed seed predation in the southeastern U.S. coastal plain. Agric Ecosyst Environ. 177:5862 CrossRefGoogle Scholar
Gallandt, ER, Molloy, T, Lynch, RP, Drummond, FA (2005) Effect of cover-cropping systems on invertebrate seed predation. Weed Sci. 53:6976 Google Scholar
Holland, JM (2002) The Agroecology of Carabid Beetles. Andover, UK Intercept. xiv + 356 pGoogle Scholar
Hutchison, WD, Burkness, EC, Mitchell, PD, Moon, RD, Leslie, TW, Fleischer, SJ, Abrahamson, M, Hamilton, KL, Steffey, KL, Gray, ME, Hellmich, RL, Kaster, LV, Hunt, TE, Wright, RJ, Pecinovsky, K, Rabaey, TL, Flood, BR, Raun, ES (2010) Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science. 330:222225 CrossRefGoogle ScholarPubMed
Lynch, RE, Wiseman, BR, Plaisted, D, Warnick, D (1999) Evaluation of transgenic sweet corn hybrids expressing Cry 1A(b) toxin for resistance to corn earworm and fall armyworm (Lepidoptera: Noctuidae). J Econ Entomol. 92:246252 Google Scholar
Lu, Y, Wu, K, Jiang, Y, Guo, Y, Desneux, N (2012) Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature. 487:362365 CrossRefGoogle ScholarPubMed
Menalled, FD, Smith, RG, Dauer, JT, Fox, TB (2007) Impact of agricultural management on carabid communities and weed seed predation. Agric Ecosyst Environ. 118:4954 CrossRefGoogle Scholar
Mullin, CA, Saunders, MC, Leslie, TW, Biddinger, DJ, Fleischer, SJ (2005) Toxic and behavioral effects to Carabidae of seed treatments used on Cry3Bb1- and Cry1Ab/c-protected corn. Environ Entomol. 34:16261636 CrossRefGoogle Scholar
Navntoft, S, Wratten, SD, Kristensen, K, Esbjerg, P (2009) Weed seed predation in organic and conventional fields. Biol Control. 49:1116 Google Scholar
Norris, RF, Kogan, M (2005) Ecology of interactions between weeds and arthropods. Ann Rev Entomol. 50:479503 Google ScholarPubMed
Prasifka, JR, Lopez, MD, Hellmich, RL, Prasifka, PL (2008) Effects of insecticide exposure on movement and population size estimates of predatory ground beetles (Coleoptera: Carabidae). Pest Manag Sci. 64:3036 CrossRefGoogle Scholar
Romeis, J, Raybould, A, Bigler, F, Candolfi, MP, Hellmich, RL, Huesing, JE, Shelton, AM (2013) Deriving criteria to select arthropod species for laboratory tests to assess the ecological risks from cultivating arthropod-resistant genetically engineered crops. Chemosphere. 90:901909 Google ScholarPubMed
Saxena, D, Flores, S, Stotzky, G (1999) Transgenic plants: Insecticidal toxin in root exudates from Bt corn. Nature. 402:480 CrossRefGoogle Scholar
Sawma, JT, Mohler, CL (2002) Evaluating seed viability by an unimbibed seed crush test in comparison with the tetrazolium test. Weed Technol. 16:781786 Google Scholar
Shearin, AF, Reberg-Horton, SC, Gallandt, ER (2007) Direct effects of tillage on the activity density of ground beetle (Coleoptera: Carabidae) weed seed predators. Environ Entomol. 36:11401146 CrossRefGoogle ScholarPubMed
Sorenson, KA, Holloway, CW (1999) Corn earworm and European corn borer control with Bt treated corn, Brunswick and Sampson Co., NY, 1998. Arthropod Manage Tests. 24:429430 Google Scholar
Stephens, EJ, Losey, JE, Allee, LL, DiTommaso, A, Bodner, C, Breyre, A (2012) The impact of Cry3Bb Bt-maize on two guilds of beneficial beetles. Agric Ecosyst Environ. 156:7281 Google Scholar
Torres, JB, Ruberson, JR (2007) Abundance and diversity of ground-dwelling arthropods of pest management importance in commercial Bt and non-Bt cotton fields. Ann Appl Biol. 150:2739 Google Scholar
Ward, MJ, Ryan, MR, Curran, WS, Barbercheck, ME, Mortensen, DA (2011) Cover crops and disturbance influence activity-density of weed seed predators Amara aenea and Harpalus pensylvanicus (Coleoptera: Carabidae). Weed Sci. 59:7681 CrossRefGoogle Scholar
Westerman, PR, Hofman, A, Vet, LEM, van der Werf, W (2003) Relative importance of vertebrates and invertebrates in epigeaic weed seed predation in organic cereal fields. Agric Ecosyst Environ. 95:417425 CrossRefGoogle Scholar
[USDA] U.S. Department of Agriculture Economic Research Service. 2014. Recent Trends in GE Adoption. http://www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-us/recent-trends-in-ge-adoption.aspx#.UwICGnddUpo. Accessed June 27, 2014Google Scholar
3
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effect of Cry3Bb Bt Corn and Tefluthrin on Postdispersal Weed Seed Predation
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Effect of Cry3Bb Bt Corn and Tefluthrin on Postdispersal Weed Seed Predation
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Effect of Cry3Bb Bt Corn and Tefluthrin on Postdispersal Weed Seed Predation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *