Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-2sbtp Total loading time: 0.388 Render date: 2021-07-24T14:10:51.146Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Direct Effect of Herbicides on Plant Pathogens and Disease Development in Various Cropping Systems

Published online by Cambridge University Press:  20 January 2017

Debanjan Sanyal
Affiliation:
Monsanto Company, Monmouth Agronomy Center, 1677 80th Street, Monmouth, IL 61462
Anil Shrestha
Affiliation:
Statewide IPM Program, Kearney Agricultural Center, University of California, Parlier, CA 93648
Corresponding

Abstract

An integrated pest management (IPM) program is a systems approach that requires an understanding of the overall agroecosystem. The interaction between different pest categories (weeds, insects, pathogens, nematodes), as well as their management practices, should be examined, understood, and taken into consideration in the design of IPM systems. Several studies have shown that plant pathogens are affected by other pests and their management practices. Herbicide application has often been cited as an example of a management practice that affects plant pathogens and disease development in various cropping systems. The activity of herbicides can extend beyond their target organisms and inhibit spore germination or mycelial growth, alter the level of phytoalexins, or interfere with other physiological processes in plants. This paper summarizes the published reports on direct effects of herbicides on plant disease and provides insights for future research on this aspect. Examples are drawn from some common agricultural herbicides and adjuvants. The discussion on various findings on herbicide and crop diseases re-emphasizes the fact that pest management in agriculture requires a systems approach. Although it is difficult to come to a common consensus on the effect of these chemicals on crop diseases or pathogens, this paper provides an overview of several interactions between herbicides and crop diseases and pathogens in various cropping systems. Knowledge of such interactions can help in the design of IPM systems.

Type
Symposium
Information
Weed Science , Volume 56 , Issue 1 , February 2008 , pp. 155 - 160
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below.

References

Altman, J. 1969. Pre-disposition of sugarbeets to Rhizoctonia solani damping-off with herbicides. Phytopathology. 59:1015.Google Scholar
Altman, J. 1985. Impact of herbicides on plant diseases. in Parker, C.A., Rovira, A.D., Moore, K.J., Wong, P.T.W., and Kollmorgen, J.F., eds. Ecology and Management of Soilborne Plant Pathogens. St. Paul, MN American Phytopathology Society. 227231.Google Scholar
Anderson, J. A. and Kolmer, J. A. 2005. Rust control in glyphosate tolerant wheat following application of the herbicide glyphosate. Plant Dis. 89:11361142.CrossRefGoogle Scholar
Ashton, F. M. and Crafts, A. S. 1981. Mode of Action of Herbicides. 2nd ed. New York John Wiley. 239245.Google Scholar
Askew, S. D., Wilcut, J. W., and Cranmer, J. R. 1999. Weed management in peanut (Arachis hypogaea) with flumioxazin preemergence. Weed Technol. 13:594598.Google Scholar
Berner, D. K., Berggren, G. T., and Snow, J. P. 1991. Effects of glyphosate on Calonectria crotolariae and red crown rot of soybean. Plant Dis. 75:809813.CrossRefGoogle Scholar
Bhattacharyya, M. K. and Ward, E. W. B. 1986. Expression of gene-specific and age-related resistance and the accumulation of glyceollin in soybean leaves infected with Phytophthora megasperma f. sp. glycinea. Physiol. Mol. Plant Pathol. 29:105113.CrossRefGoogle Scholar
Black, B. D., Russin, J. S., Griffin, J. L., and Snow, J. P. 1996. Herbicide effects on Rhizoctonia solani in vitro and Rhizoctonia foliar blight of soybean (Glycine max). Weed Sci. 44:711716.Google Scholar
Boland, G. J. and Hall, R. 1987. Evaluating soybean cultivars for resistance to Sclerotinia sclerotiorum under field conditions. Plant Dis. 71:934936.CrossRefGoogle Scholar
Bollen, W. B. 1961. Interactions between pesticides and soil microorganisms. Ann. Rev. Microbiol. 15:6972.CrossRefGoogle Scholar
Bollen, J. G. 1993. Mechanisms involved in nontarget effects of pesticides on soil-borne pathogens. in Altman, J., ed. Pesticide Interactions in Crop Production: Beneficial and Deleterious Effects. Boca Raton, FL CRC. 282301.Google Scholar
Bradley, C. A., Hartman, G. L., Wax, L. M., and Pedersen, W. L. 2002. Influence of herbicides on Rhizoctonia root and hypocotyl rot of soybean. Crop Prot. 21:679687.CrossRefGoogle Scholar
Brown, S. L. and Curl, C. A. 1987. Rhizosphere effects of herbicide-stressed sicklepod (Cassia obtusifolia) on chlamydospores of Fusarium oxysporum f. sp. vasinfectum. Plant Dis. 71:919922.CrossRefGoogle Scholar
Buzzell, R. I., Welacky, T. W., and Anderson, T. R. 1993. Soybean cultivar reaction and row width effect on Sclerotinia stem rot. Can. J. Plant Sci. 73:11691175.CrossRefGoogle Scholar
Canady, C. H., Helsel, D. G., and Wyllie, T. D. 1986. Effects of herbicide-induced stress on root colonization of soybeans by Macrophomina phaseolina . Plant Dis. 70:863866.CrossRefGoogle Scholar
Carson, M. L., Arnold, W. E., and Todt, P. E. 1991. Predisposition of soybean seedlings to Fusarium root rot with trifluralin. Plant Dis. 75:342347.CrossRefGoogle Scholar
Casale, W. L. and Hart, L. P. 1986. Influence of four herbicides on carpogenic germination and apothecium development of Sclerotinia sclerotiorum . Phytopathology. 76:980984.CrossRefGoogle Scholar
Christy, A. L., Herbst, K. A., Kostka, S. J., Mullen, J. P., and Carlson, P. S. 1993. Synergizing weed biocontrol agents with chemical herbicides. in Duke, S.O., Menn, J.J., and Plimmer, J.R., eds. Pest Control with Enhanced Environmental Safety. ACS Symposium Series 524. Washington, DC American Chemical Society. 87100.CrossRefGoogle Scholar
Cloud, G. L. and Rupe, J. C. 1991. Comparison of three media for enumeration of sclerotia of Macrophomina phaseolina . Plant Dis. 75:771772.CrossRefGoogle Scholar
Cohen, R., Riov, J., Lisker, N., and Katan, J. 1986. Involvement of ethylene in herbicide-induced resistance to Fusarium oxysporum f. ssp. melonis. Phytopathology. 76:12811285.CrossRefGoogle Scholar
Dann, E. K., Diers, B. W., and Hammerschmidt, R. 1999. Suppression of Sclerotina stem rot of soybean by lactofen herbicide treatment. Phytopathology. 89:598602.CrossRefGoogle Scholar
Daugrois, J. H., Hoy, J. W., and Griffin, J. L. 2005. Protoporphyrinogen oxidase inhibitor herbicide effects on Pythium root rot of sugarcane, Pythium species, and the soil microbial community. Phytopathol. 95:220226.CrossRefGoogle ScholarPubMed
Devine, M. D., Duke, S. O., and Fedtke, C. 1993. Physiology of Herbicide Action. Englewood Cliffs, NJ PTR Prentice Hall. 274281.Google Scholar
Dissanayake, N., Hoy, J. W., and Griffin, J. L. 1998. Herbicide effects on sugarcane growth, Pythium root rot, and Pythium arrhenomanes . Phytopathology. 88:530535.CrossRefGoogle ScholarPubMed
Eberwine, J. W., Hagood, E. S. Jr., and Tolin, S. A. 1998. Quantification of viral disease incidence in corn (Zea mays) as affected by Johnsongrass (Sorghum halepense) control. Weed Technol. 12:121127.Google Scholar
Ehler, L. E. 2006. Integrated pest management (IPM): definition, historical development and implementation, and the other IPM. Pest Manage. Sci. 62:787789.CrossRefGoogle ScholarPubMed
Feng, P. C. C., Baley, G. J., Clinton, W. P., Bunkers, G. J., Alibhai, M. F., Paulitz, T. C., and Kidwell, K. K. 2005. Glyphosate inhibits rust diseases in glyphosate-resistant wheat and soybean. Proc. Natl. Acad. Sci. U S A. 102:1729017295.CrossRefGoogle ScholarPubMed
Fletcher, W. W. 1960. Effect of organic herbicides on soil microorganisms. Pest. Technol. 3:272275.Google Scholar
Fletcher, W. W. 1961. The effect of herbicides on soil microorganisms. in Woodford, E.K., ed. Herbicides and the Soil. Oxford, UK Blackwell Scientific. 6062.Google Scholar
Franz, J. E., Mao, M. K., and Sikorski, J. A. 1997. Glyphosate: A Unique Global Herbicide. Monograph 189. Washington, DC American Chemical Society.Google Scholar
Haney, R. L., Senseman, S. A., Hons, F. M., and Zuberer, D. A. 2000. Effect of glyphosate on soil microbial activity and biomass. Weed Sci. 48:8993.CrossRefGoogle Scholar
Harikrishnan, R. and Yang, X. B. 2001. Influence of herbicides on growth and sclerotia production in Rhizoctonia solani . Weed Sci. 49:241247.CrossRefGoogle Scholar
Hershman, D. E., Hendrix, J. W., Stuckey, R. E., Bachi, P. R., and Henson, G. 1990. Influence of planting date and cultivar on soybean sudden death syndrome in Kentucky. Plant Dis. 74:761766.CrossRefGoogle Scholar
Hoffman, D. D., Hartman, G. L., Mueller, D. S., Leitz, R. A., Nickell, C. D., and Pedersen, W. L. 1998. Yield and seed quality of soybean cultivars infected with Sclerotinia sclerotiorum . Plant Dis. 82:826829.CrossRefGoogle Scholar
Holliday, M. J. and Keen, N. T. 1982. The role of phytoalexins in the resistance of soybean leaves to bacteria: effect of glyphosate on glyceollin accumulation. Phytopathology. 72:14701474.CrossRefGoogle Scholar
Ingham, J. L. 1982. Phytoalexins from the leguminosae. in Bailey, J.A. and Mansfield, J.W., eds. Phytoalexins. Glasglow, UK Blackie & Son. 2180.Google ScholarPubMed
Kawate, M. K., Kawate, S. C., Ogg, A. G. Jr., and Kraft, J. M. 1992. Response of Fusarium solani f. sp. pisi and Pythium ultimum to glyphosate. Weed Sci. 40:497502.Google Scholar
Keen, N. T., Holliday, M. J., and Yoshikawa, M. 1982. Effects of glyphosate on glyceollin production and the expression of resistance to Phytophthora megasperma f. sp. glycinea in soybean. Phytopathology. 72:14671470.CrossRefGoogle Scholar
Kim, H. S., Sneller, C. H., and Diers, B. W. 1999. Evaluation of soybean cultivars for resistance to Sclerotinia stem rot in field environments. Crop Sci. 39:6468.CrossRefGoogle Scholar
Kishore, G. M. and Shah, D. M. 1998. Amino acid biosynthesis inhibitors as herbicides. Annu. Rev. Biochem. 57:627663.CrossRefGoogle ScholarPubMed
Leach, S. S., Murdoch, C. W., and Gordon, C. 1991. Response of selected soilborne fungi and bacteria to herbicides utilized in potato crop management systems in Maine. Am. Potato J. 68:269278.CrossRefGoogle Scholar
Lee, C. and Penner, D. 1999. The effect of glyphosate on white mold (Sclerotinia sclerotiorum) in glyphosate-resistant and sensitive soybeans (Glycine max). in. Abstracts, 39th Annual Meeting of the Weed Science Society of America, San Diego, CA. Lawrence, KS Weed Science Society of America. 83.Google Scholar
Lee, C. D., Penner, D., and Hammerschmidt, R. 2000. Influence of formulated glyphosate and activator adjuvants on Sclerotinia sclerotiorum in glyphosate-resistant and -susceptible Glycine max . Weed Sci. 48:710715.CrossRefGoogle Scholar
Lee, C. D., Penner, D., and Hammerschmidt, R. 2003. Glyphosate and shade effects on glyphosate-resistant soybean defense response to Sclerotinia sclerotiorum . Weed Sci. 51:294298.CrossRefGoogle Scholar
Levene, B. C., Owen, M. D. K., and Tylka, G. L. 1998. Response of soybean cyst nematodes and soybeans (Glycine max) to herbicides. Weed Sci. 46:264270.Google Scholar
Lévesque, C. A. and Rahe, J. E. 1992. Herbicide interactions with fungal root pathogens, with special reference to glyphosate. Ann. Rev. Phytopathol. 30:579602.CrossRefGoogle ScholarPubMed
Liu, C. A., Zhong, H., Vargas, J., Penner, D., and Sticklen, M. B. 1998. Prevention of fungal diseases in transgenic, bialaphos- and glufosinate-resistant creeping bentgrass (Agrostis palustris). Weed Sci. 46:139146.Google Scholar
Matringe, M., Camadro, J. M., Block, M. A., Joyard, J., Scalla, R., Labbe, P., and Douce, R. 1992. Localization within chloroplasts of protoporphyrinogen oxidase, the target enzyme for diphenylether-like herbicides. J. Biol. Chem. 267:46464651.Google ScholarPubMed
Meriles, J. M., Gil, S. V., Haro, R. J., March, G. J., and Guzman, C. A. 2006. Glyphosate and previous crop residue effect on deleterious and beneficial soil-borne fungi from a peanut–corn–soybean rotations. J. Phytopathol. 154:309316.CrossRefGoogle Scholar
Michailides, T. J. and Spotts, R. A. 1991. Effects of certain herbicides on the fate of sporangiospores of Mucor piriformis and conidia of Botrytis cinerea and Penicillium expansum . Pestic. Sci. 33:1122.CrossRefGoogle Scholar
Morjan, W. E., Pedigo, L. P., and Lewis, L. C. 2002. Fungicidal effects of glyphosate and glyphosate formulations on four species of entomopathogenic fungi. Environ. Entomol. 31:1206–121.CrossRefGoogle Scholar
Nelson, K. A., Renner, K. A., and Hammerschmidt, R. 2002a. Effects of protoporhyrinogen oxidase inhibitors on soybean (Glycine max L.) response, Sclerotinia sclerotiorum disease development, and phytoalexin production by soybean. Weed Technol. 16:353359.CrossRefGoogle Scholar
Nelson, K. A., Renner, K. A., and Hammerschmidt, R. 2002b. Cultivar and herbicide selection affects soybean development and the incidence of Sclerotinia stem rot. Agron. J. 94:12701281.CrossRefGoogle Scholar
Neubauer, R. and Avizohar-Hershenson, Z. 1973. Effect of herbicide, trifluralin, on Rhizoctonia disease in cotton. Phytopathology. 63:651652.CrossRefGoogle Scholar
Njiti, V. N., Myers, O. Jr., Schroeder, D., and Lightfoot, D. A. 2003. Glyphosate effects on Fusarium solani root colonization and sudden death syndrome. Agron. J. 95:11401145.CrossRefGoogle Scholar
Ogawa, Y., Tsuruoka, T., Inouye, S., and Niida, T. 1973. Chemical structure of antibiotic SF-1293. Sci. Rep. Meiji Seika Kaisha. 13:4248. Chem. Abstr. 1974, 81:37806r.Google Scholar
Pankey, J. H., Griffin, J. L., Colyer, P. D., Schneider, R. W., and Miller, D. K. 2005. Preemergence herbicide and glyphosate effects on seedling diseases in glyphosate-resistant cotton. Weed Technol. 19:312318.CrossRefGoogle Scholar
Partridge, D. E., Sutton, T. B., and Jordan, D. L. 2006. Effect of environmental factors and pesticides on mycoparasitism of Sclerotinia minor by Coniothyrium minitans . Plant Dis. 90:14071412.CrossRefGoogle Scholar
Pinckard, J. A. and Standifer, L. C. 1966. An apparent interaction between cotton herbicidal injury and seedling blight. Plant Dis. Rep. 50:172177.Google Scholar
Radkey, V. L. and Grau, C. R. 1986. Effects of herbicides on carpogenic germination of Sclerotinia sclerotiorum . Plant Dis. 70:1923.CrossRefGoogle Scholar
Reichard, S. L., Sulc, R. M., Rhodes, L. H., and Loux, M. M. 1997. Effects of herbicides on Sclerotinia crown and stem rot of alfalfa. Plant Dis. 81:787790.CrossRefGoogle Scholar
Rodriguez-Kabana, R., Curl, E. A., and Funderburk, J. H. Jr. 1966. Effect of four herbicides on growth of Rhizoctonia solani . Phytopathology. 56:13321333.Google Scholar
Rupe, J. C. D., Sable, W. E., Robbins, R. T., and Gbur, E. E. 1993. Soil and plant factors associated with sudden death syndrome of soybean. J. Prod. Agric. 6:218221.CrossRefGoogle Scholar
Russin, J. S., Carter, C. H., and Griffin, J. L. 1995. Effects of grain sorghum (Sorghum bicolor) herbicides on charcoal rot fungus. Weed Technol. 9:343351.Google Scholar
Sanogo, S., Yang, X. B., and Scherm, H. 2000. Effects of herbicides on Fusarium solani f. sp. glycines and development of sudden death syndrome in glyphosate-tolerant soybean. Phytopathology. 90:5766.CrossRefGoogle Scholar
Sanogo, S., Yang, X. B., and Lundeen, P. 2001. Field response of glyphosate-tolerant soybean to herbicides and sudden death syndrome. Plant Dis. 85:773779.CrossRefGoogle Scholar
Sharma, U., Adee, E. A., and Pfender, W. F. 1989. Effect of glyphosate herbicide on pseudothecia formation by Pyrenophora tritici-repentis in infested wheat straw. Plant Dis. 73:647650.CrossRefGoogle Scholar
Smiley, R. W. 1983. Compendium of Turfgrass Diseases. St. Paul, MN The American Phytopathology Society. 171.Google Scholar
Smith, N. R., Dawson, V. T., and Wenzel, M. E. 1945. The effect of certain herbicides on soil microorganisms. Proc. Soil Sci. Soc. Amer. 10:197201.CrossRefGoogle Scholar
Suzuki, T., Moriya, C., and Yoshida, J. 1973. Isolation and physico-chemical and biological characterization of SF-1293 substance. Sci. Rep. Meiji Seika Kaisha. 13:3441. Chem. Abstr. 81:89705b.Google Scholar
Toubia-Rahme, H., Ali-Haimoud, D. E., Barrault, G., and Albertini, L. 1995. Inhibition of Dreschslera teres sclerotioid formation in barley straw by application of glyphosate or paraquat. Plant Dis. 79:595598.CrossRefGoogle Scholar
Turkington, T. K., Orr, D. D., and Xi, K. 2001. The influence of Roundup (R) on in vitro growth and sporulation of Rhynchosporium secalis and Pyrenophora teres . Can. J. Plant Pathol. 23:307311.CrossRefGoogle Scholar
Uchimiya, H., Iwata, M., and Nojiri, C. et al. 1993. Bialaphos treatment of transgenic rice plants expressing a bar gene prevents infection by the sheath blight pathogen (Rhizoctonia solani). Bio/Technology. 11:835836.Google Scholar
Uddin, W., Soika, M. D., McNitt, A. S., and Fidanza, M. 2004. Effects of timing of ethofumesate application on severity of gray leaf spot of perennial ryegrass turf. Plant Dis. 88:11461152.CrossRefGoogle Scholar
Verma, P. R. and McKenzie, D. L. 1985. In vitro effects of herbicides on mycelial growth of AG2-1 and AG-4 Rhizoctonia solani isolates from canola/rapeseed. Phytopathology. 75:1363.Google Scholar
Wagner, R., Kogan, M., and Parada, A. M. 2003. Phytotoxic activity of root absorbed glyphosate in corn seedlings (Zea mays L). Weed Biol. Manage. 3:228232.CrossRefGoogle Scholar
Wang, Y., Browning, M., Ruemmele, B. A., Chandlee, J. M., Kausch, A. P., and Jackson, N. 2003. Glufosinate reduces fungal diseases in transgenic glufosinate-resistant bentgrasses (Agrostis spp). Weed Sci. 51:130137.CrossRefGoogle Scholar
Wilcut, J. W., Askew, S. D., Bailey, W. A., Spears, J. F., and Isleib, T. G. 2001. Virginia market-type peanut (Arachis hypogaea) cultivar tolerance and yield response to flumioxazin preemergence. Weed Technol. 15:137140.CrossRefGoogle Scholar
Wong, P. T. W., Dowling, P. M., Tesoriero, L. A., and Nicol, H. I. 1993. Influence of pre-season weed management and in-crop treatments on 2 successive wheat crops. 2. Take-all severity and incidence of Rhizoctonia root rot. Aust. J. Exp. Agric. 33:173177.CrossRefGoogle Scholar
Wyss, G. S. and Müller-Schärer, H. 2001. Effects of selected herbicides on the germination and infection process of Puccinia lagenophora, a biocontrol pathogen of Senecio vulgaris . Biol. Control. 20:160166.CrossRefGoogle Scholar
Yang, X. B., Lundee, P., and Uphoff, M. D. 1999. Soybean varietal response and yield loss caused by Scleriotinia sclerotiorum . Plant Dis. 83:456461.CrossRefGoogle Scholar
22
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Direct Effect of Herbicides on Plant Pathogens and Disease Development in Various Cropping Systems
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Direct Effect of Herbicides on Plant Pathogens and Disease Development in Various Cropping Systems
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Direct Effect of Herbicides on Plant Pathogens and Disease Development in Various Cropping Systems
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *