Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-23T22:29:05.512Z Has data issue: false hasContentIssue false

Spatial neglect is associated with increased latencies of visual evoked potentials

Published online by Cambridge University Press:  02 June 2009

Donatella Spinelli
Affiliation:
Dipartimento di Psicologia, Università di Roma, Via dei Marsi 78, Rome, Italy Clinica S. Lucia, Rome, Italy
David C. Burr
Affiliation:
Dipartimento di Psicologia, Università di Roma, Via dei Marsi 78, Rome, Italy Istituto di Neurofisiologia del CNR, Pisa, Italy
M. Concetta Morrone
Affiliation:
Istituto di Neurofisiologia del CNR, Pisa, Italy Scuola Normale Superiore, Pisa, Italy

Abstract

We have recorded steady-state visual evoked potentials (VEPs) from patients with vascular damage to their right brain hemispheres, some suffering from unilateral spatial neglect (n = 9), and some not (n = 7). VEPs were recorded in response to sinusoidal gratings of 0.56 cycle/deg contrast-reversed sinusoidally at temporal frequencies from 4–11 Hz. Stimuli were presented either to the left or to the right visual field, or to both. Confirming previous reports, reliable VEPs were recorded from stimuli in the left contralesional hemifield, of comparable amplitude to those of the ipsilesional hemifield and to those of both hemifields of brain damaged patients without neglect. However, analysis of apparent latency derived from phase data showed that the VEPs from the contralesional hemifield were systematically delayed by 30–40 ms compared with those of the ipsilesional hemifield, and compared with both hemifields of the nonneglect groups. This result suggests changes in neural processing in neglect patients.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Birch, H.G., Belmont, I. & Karp, E. (1967). Delayed information processing and extinction following cerebral damage. Brain 90, 113130.CrossRefGoogle ScholarPubMed
Bisiach, E. & Luzzatti, C. (1978). Unilateral neglect of representational space. Cortex 14, 129133.CrossRefGoogle ScholarPubMed
Bisiach, E. & Vallar, G. (1988). Hemineglect in humans. In Handbook of Neuropsychology, Vol. I, ed. Boller, F. & Grafman, J., pp. 195222. Holland: Elsevier.Google Scholar
Bodis-Wollner, I., Atkin, A., Raab, E. & Wolkstein, M. (1977). Visual association cortex and vision in man: Pattern-evoked occipital potentials in a blind boy. Science 198, 629630.CrossRefGoogle Scholar
Bosley, T.M., Dann, R., Silver, F.L., Alavi, A., Kushner, M., Chawluk, J.B., Savino, P.J., Sergott, R.C., Schatz, N.J. & Reivich, M. (1987). Recovery of vision after ischemic lesion: Positron emission tomography. Annuls Neurology 21, 444450.CrossRefGoogle ScholarPubMed
Burr, D.C. & Eikelboom, R. (1987). Tessa II: A compact grating generator. Perception 16, 240.Google Scholar
Campbell, F.W. & Maffel, L. (1970). Electrophysiological evidence for the existence of orientation and size detectors in the human visual system. Journal of Physiology (London) 207, 635652.CrossRefGoogle ScholarPubMed
Corbetta, M., Miezin, F.M., Dobmeyer, S., Shulman, G.L. & Peterson, S.E. (1991). Selective and divided attention during visual discrimination of shape, color, and speed: Functional anatomy by positron emission tomography. Journal of Neuroscience 11, 23832402.CrossRefGoogle ScholarPubMed
Doricchi, F., Guariglia, C., Paolucci, S. & Pizzamiglio, L. (1993). Disturbances of the rapid eye movements (REMs) of the REM sleep in patients with unilateral attentional neglect: Clue for the understanding of the functional meaning of the REMs. EEG Journal 87, 105116.Google ScholarPubMed
Driver, J., Baylis, G.C. & Rafai, R.D. (1992). Preserved figure-ground segregation and symmetry perception in visual neglect. Nature 360, 7375.CrossRefGoogle ScholarPubMed
Felleman, D.J. & Van Essen, D.C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1, 147.CrossRefGoogle ScholarPubMed
Girotti, F., Casaza, M., Musicco, M. & Avanzini, G. (1983). Oculomotor disorders in cortical lesions in man, the role of unilateral neglect. Neuropsychologia 21, 543–533.CrossRefGoogle ScholarPubMed
Goodale, M.A. & Milner, A.D. (1992). Separate pathways for perception and action. Trends in Neuroscience 15, 2025.CrossRefGoogle ScholarPubMed
Grüsser, O.-J. & Landis, T. (1991). Vision and Visual Dysfunction: Visual Agnosias and Other Disturbances of Visual Perception and Cogni. London: MacMillan.Google Scholar
Guariglia, C., Padovani, A., Pantano, P. & Pizzamiglio, L. (1993). Unilateral neglect restricted to visual imagery. Nature 364, 235237.CrossRefGoogle ScholarPubMed
Heywood, C.A., Gadotti, A. & Cowey, A. (1992). Cortical area V4 and its role in the perception of color. Journal of Neuroscience 12, 40564065.CrossRefGoogle ScholarPubMed
Kaplan, E., Lee, B. & Shapley, R.M. (1990). New views of primate retinal function. Progress in Retinal Research 9, 273336.CrossRefGoogle Scholar
Karnath, H.O., Scenkel, P. & Fischer, B. (1991). Trunk orientation as the determining factor of the ‘contralatera’ deficit in the neglect syndrome. Brain 114, 19972014.CrossRefGoogle Scholar
Kuhl, D.E., Phelps, M.E., Kowell, A.P., Metter, E.J., Selin, C. & Winter, J. (1980). Effects of stroke on local cerebral metabolism and perfusion: Mapping by emission computed tomography FDG and NH3. Annuls Neurology 8, 4760.CrossRefGoogle Scholar
Merigan, W.H. (1989). Chromatic and achromatic vision of macaques: Role of the P pathway. Journal of Neuroscience 9, 776783.CrossRefGoogle ScholarPubMed
Morrone, M.C., Burr, D.C. & Fiorentini, A. (1993). Development of infant contrast sensitivity to chromatic stimuli. Vision Research 33, 25352552.CrossRefGoogle ScholarPubMed
Motter, B.C. (1991). Beyond extrastriate cortex: the parietal visual system. In Vision and Visual Dysfunction: The Neural Basis of Visual function, ed. Leventhal, A.G., pp. 371387. London: MacMillan Press.Google Scholar
Nowak, L.G., Munk, M.H.J., Chounlamountri, N. & Bullier, J. (1994). Temporal aspects of information processing in area V1 and V2 of the macaque mon monkey. In Oscillatory Events and Related Brain Dynamics, ed. Pantev, C., Elbert, Th., & Lutkenhoner, B., Plenum Publication (in press).CrossRefGoogle Scholar
Onofrj, M., Bodis-Wollner, I. & Mylin, L. (1982). Visual evoked potential diagnosis of field defects in patients with chiasmatic and retrochiasmatic lesions. Journal of Neurology, Neurosurgery, and Psychiatry 45, 294302.Google ScholarPubMed
Pizzamiglio, L., Judica, A., Razzano, C. & Zoccolotti, P. (1989). Toward a comprehensive diagnosis of visual-spatial disorders in unilateral brain damaged patients. Psychological Assessment 5, 199218.Google Scholar
Porciatti, V., Burr, D.C., Morrone, M.C. & Fiorentini, A. (1992). The effects of ageing on the pattern electroretinogram and visual evoked potential in humans. Vision Research 32, 11991209.CrossRefGoogle ScholarPubMed
Regan, D. (1966). Some characteristics of average steady-state and transient responses evoked by modulated light. EEG & Clinical Neuro-physiology 20, 238248.CrossRefGoogle ScholarPubMed
Riddoch, J.S. & Humpreys, G.W. (1987). Perceptual and action systems in unilateral visual neglect. In Neurophysiological and Neu-ropsychological Aspects of Spatial Neglect, ed. Jeannerod, M., pp. 151179. Holland: Elsevier.CrossRefGoogle Scholar
Riemslag, F.C.C., Spekreuse, H. & Van Walbekk, H. (1982). Pattern evoked potential diagnosis of multiple sclerosis: A comparison of various contrast stimuli. In Clinical Applications of Evoked Potentials in Neurology, ed. Courjon, J., Mauguiere, F. & Revol, M., pp. 417426. New York: Raven Press.Google Scholar
Rizzolatti, G. & Gallese, V. (1988). Mechanisms and theories of spatial neglect. In Handbook of Neuropsychology, Vol. 1, ed. Boller, F. & Grafman, J., pp. 223246. Holland: Elsevier.Google Scholar
Rover, J., Schaubele, G. & Berndt, K. (1980). Macula and periphery: Their contribution to the VEp in humans. Graefe's Archives of Clinical Ophthalmology 53, 7377.Google Scholar
Schall, J.D. (1991). Neural basis of saccadic eye movements in primates. In Vision and Visual Dysfunction: The Neural Basis of Visual function, ed. Leventhal, A.G., pp. 388442. London: MacMillan.Google Scholar
Shapley, R. (1990). Visual sensitivity and parallel retinocortical channels. Annual Review of Psychology 41, 635658.CrossRefGoogle ScholarPubMed
Shapley, R., & Perry, H. (1986). Cat and monkey retinal ganglion cells and their visual functional roles. Trends in Neuroscience 5, 229235.CrossRefGoogle Scholar
Spekreijse, H., Estevez, O. & Reits, D. (1977). Visual evoked potentials and the physiological analysis of visual processes in man. In Visual Evoked Potentials in Man: New Developments, ed. Desmedt, J.E., pp. 1689. Oxford: Clarendon Press.Google Scholar
Spinelli, D., Burr, D.C. & Morrone, M.C. (1993). Visual evoked potentials in patients suffering from spatial neglect. Perception (Suppl.) (in press).Google Scholar
Tononi, G., Sporns, O. & Edelman, G.M. (1992). Reenetry and the problem of integrating multiple cortical areas: Simulation of dynamic integration in the visual system. Cerebral Cortex 2, 310335.CrossRefGoogle ScholarPubMed
Ungerleider, L.G. & Desimone, R. (1986). Cortical projections of visual area MT in the macaque. Journal of Comparative Neurology 248, 147163.CrossRefGoogle ScholarPubMed
Vaina, L.M., Lemay, M., Bienfang, D.C., Choi, A.Y. & Nakayama, K. (1990). Intact “biological motion” and “structure from motion” perception in a patient with impaired motion mechanisms: A case study. Visual Neuroscience 5, 353369.CrossRefGoogle Scholar
Vallar, G. & Perani, D. (1986). The anatomy of unilateral neglect after right-hemisphere stroke lesions: A clinic/CT scan correlation study in man. Neuropsychologica 24, 445448.CrossRefGoogle Scholar
Vallar, G. & Perani, D. (1987). The anatomy of spatial neglect in humans. In Neurophysiological and Neuropsychological Aspects of Spatial Neglect, ed. Jeannerod, M., pp. 235258. Holland: Elsevier.CrossRefGoogle Scholar
Vallar, G., Sandroni, P., Rusconi, M.L. & Barbieri, S. (1991). Hemianopia, hemianesthesia, and spatial neglect: A study with evoked potentials. Neurology 41, 19181922.CrossRefGoogle ScholarPubMed
Van Essen, D.C., Anderson, C.H. & Felleman, D.J. (1992). Information processing in the primate visual system: An integrated systems perspective. Science 255, 419423.CrossRefGoogle ScholarPubMed
Victor, J.D. & Mast, J. (1991). A new statistic for steady-state evoked potentials. Electroencephalography and Clinical Neurophysiology 78, 378388.CrossRefGoogle ScholarPubMed
Viggiano, M.P., Mecacci, L. & Spinelli, D. (1994). Phase-reversal visual evoked potentials in patients with visual neglect. Brain and Cognition (in press).Google Scholar
Wurtz, R. H. & Goldberg, M.E. (1989). The Neurobiology of Saccadic Eye Movements. New York: Elsevier.Google Scholar
Zeki, S. (1980). The representation of colours in the cerebral cortex. Nature 284, 412418.CrossRefGoogle ScholarPubMed
Zeki, S., Watson, J.D., Lueck, C.J., Friston, K.J., Kennard, C. & Frackowiak, (1991). A direct demonstration of functional specialization in human visual cortex. Journal of Neuroscience 11, 641649.CrossRefGoogle ScholarPubMed