Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-01T04:54:27.328Z Has data issue: false hasContentIssue false

Organization of individual cortical axons projecting from area V1 (area 17) to V2 (area 18) in the macaque monkey

Published online by Cambridge University Press:  02 June 2009

Kathleen S. Rockland
Affiliation:
Department of Anatomy, Boston University School of Medicine, Boston
Agnes Virga
Affiliation:
Department of Anatomy, Boston University School of Medicine, Boston

Abstract

The present study uses the anterograde tracer, Phaseolus vulgaris-leucoagglutinin (PHA-L), to investigate the detailed morphology of individual axons projecting from area V1 to prestriate area V2. Observations are derived from serial reconstructions of 45 axons. Axons are found to differ both in laminar distribution and in arbor size. The majority (25/45; 56%) terminate in the upper half of layer 4 and the lower part of layer 3. Terminal clusters typically measure about 200 μm in diameter (dimensions are uncorrected for shrinkage), and are either in one, two, or occasionally three patches. Patches are separated by 200−500 μm. Of these 25 axons, four also have minor collaterals to layer 5. Of the remaining 20 axons in our sample, eight have one or two terminal arbors (about 200 μm in diameter) mainly in layer 3; another eight have terminations, organized as a single field (about 350 μm in diameter), within layer 4; and four axons have much larger terminal fields (1.0−1.2 mm × 0.3 mm), in layers 3 nd 4. These morphological differences might constitute a gradient or, alternately, indicate distinct subgroups within the striate efferent population. Large terminal fields are asymmetrical, with their long axis oriented in an anterior-posterior fashion toward the depth of the lunate sulcus. Axons with two terminal arbors have a similar bias. As this arrangement is approximately perpendicular to the border of V1, we suggest that striate axons may be extended preferentially along the length of the stripelike compartments in V2. These compartments are also arrayed perpendicular to the border between areas V1 and V2. Reconstruction of small groups of 2–4 convergent axons demonstrates that axons with different morphology (i.e. large or small terminal fields) can occur within the same projection focus. Terminal arbors belonging to different axons can overlap, but tend not to be superimposed exactly.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albright, T.D. & Desimone, R. (1987). Precision of visuotopic organization in area MT of the macaque. Experimental Brain Research 65, 582592.CrossRefGoogle ScholarPubMed
Baizer, J.S., Robinson, D.L. & Dow, B.M. (1977). Visual response of area 18 neurons in awake behaving monkey. Journal of Neurophysiology 40, 10241037.CrossRefGoogle ScholarPubMed
Benevento, L.A. & Rezak, M. (1976). The cortical projections of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey (Macaca mulatta): an autoradiographic study. Brain Research 108, 124.CrossRefGoogle ScholarPubMed
Blasdel, G.G. & Lund, J.S. (1983). Termination of afferent axons in macaque striate cortex. Journal of Neuroscience 3, 13891413.CrossRefGoogle ScholarPubMed
Blasdel, G.G. & Fitzpatrick, D. (1984). Physiological organization of layer 4 in macaque striate cortex. Journal of Neuroscience 4, 880895.CrossRefGoogle ScholarPubMed
Blasdel, G.G., Lund, J.S. & Fitzpatrick, D. (1985). Intrinsic connections of macaque striate cortex: axonal projections of cells outside lamina 4C. Journal of Neuroscience 5, 33503369.CrossRefGoogle ScholarPubMed
Curcio, C.A. & Harting, J.K. (1978). Organization of pulvinar afferents to area 18 in the squirrel monkeys: evidence for stripes. Brain Research 143, 155161.CrossRefGoogle ScholarPubMed
DeFelipe, J., Conley, M. & Jones, E.G. (1986). Long-range focal collateralization of axons arising from corticocortical cells in monkey sensory-motor cortex. Journal of Neuroscience 6, 37493766.CrossRefGoogle ScholarPubMed
DeYoe, E.A. & Van Essen, D.C. (1985). Segregation of efferent connections and receptive-field properties in visual area V2 of the macaque. Nature 317, 5861.CrossRefGoogle ScholarPubMed
Ferster, D. & LeVay, S. (1978). The axonal arborizations of lateral geniculate neurons in the striate cortex of the cat. Journal of Comparative Neurology 182, 923944.CrossRefGoogle ScholarPubMed
Fitzpatrick, D., Lund, J.S. & Blasdel, G.G. (1985). Intrinsic connections of macaque striate cortex: afferent and efferent connections of lamina 4C. Journal of Neuroscience 5, 33293349.CrossRefGoogle ScholarPubMed
Florence, S.L. & Casagrande, V.A. (1987). Organization of individual afferent axons in layer IV of striate cortex in a primate. Journal of Neuroscience 7, 38503868.CrossRefGoogle ScholarPubMed
Gattass, R. & Gross, C.G. (1981). Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. Journal of Neurophysiology 46, 621638.CrossRefGoogle ScholarPubMed
Gattass, R., Gross, C.G. & Sandell, J.H. (1981). Visual topography of V2 in the macaque. Journal of Comparative Neurology 201, 519539.CrossRefGoogle ScholarPubMed
Gerfen, C.R. & Sawchenko, P.E. (1984). An anterograde neuroanatomical tracing method that shows the detailed morphology of neurons, their axons and terminals: immunohistochemical localization of an axonally transported plant lectin, Phaseolus vulgaris-leucoagglutinin (PHA-L). Brain Research 290, 219238.CrossRefGoogle ScholarPubMed
Gilbert, C.D. & Wiesel, T.N. (1983). Clustered intrinsic connections in cat visual cortex. Journal of Neuroscience 3, 11161133.CrossRefGoogle ScholarPubMed
Hendry, S.H.C., Jones, E.G., Hockfield, S. & McKay, R.D.G. (1988). Neuronal populations stained with the monoclonal antibody Cat-301 in the mammalian cortex and thalamus. Journal of Neuroscience 8, 518542.CrossRefGoogle ScholarPubMed
Horton, J.C. (1984). Cytochrome oxidase patches: a new cytoarchitectonic feature of monkey visual cortex. Philosophical Transactions of the Royal Society B (London) 304, 199253.Google ScholarPubMed
Horton, J.C. & Hubel, D.H. (1981). Regular patchy distribution of cytochrome-oxidase staining in primary visual cortex of macaque monkey. Nature 292, 762764.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1972). Laminar and columnar distribution of geniculocortical fibers in the macaque monkey. Journal of Comparative Neurology 146, 421450.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Livingstone, M.S. (1987). Segregation of form, color, and stereopsis in primate area 18. Journal of Neuroscience 7, 33783415.CrossRefGoogle ScholarPubMed
Humphrey, A.L. & Hendrickson, A.E. (1983). Background and stimulus-induced patterns of high metabolic activity in the visual cortex (area 17) of the squirrel and macaque monkey. Journal of Neuroscience 3, 345358.CrossRefGoogle ScholarPubMed
Humphrey, A.L., Sur, M., Uhlrich, D.J. & Sherman, M.S. (1985). Projection patterns of individual X- and Y-cell axons from the lateral geniculate nucleus to cortical area 17 in the cat. Journal of Comparative Neurology 233, 159189.CrossRefGoogle ScholarPubMed
Kennedy, H. & Bullier, J. (1985). A double-labeling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey. Journal of Neuroscience 5, 28152830.CrossRefGoogle ScholarPubMed
Kisvarday, Z.F., Cowey, A., Smith, A.D. & Somogyi, P. (1989). Interlaminar and lateral excitatory amino acid connections in the Striate cortex of monkey. Journal of Neuroscience 9, 667682.CrossRefGoogle ScholarPubMed
LeVay, S. & Gilbert, C.D. (1976). Laminar patterns of geniculocortical projection in the cat. Brain Research 113, 119.CrossRefGoogle ScholarPubMed
Livingstone, M.S. & Hubel, D.H. (1982). Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex. Proceedings of the National Academy of Sciences of the U.S.A. 79, 60986101.CrossRefGoogle ScholarPubMed
Livingstone, M.S. & Hubel, D.H. (1983). Specificity of cortico-cortical connections in monkey visual system. Nature 304, 531534.CrossRefGoogle ScholarPubMed
Livingstone, M.S. & Hubel, D.H. (1984). Anatomy and physiology of a color system in the primate visual cortex. Journal of Neuroscience 4, 309356.CrossRefGoogle ScholarPubMed
Livingstone, M.S. & Hubel, D.H. (1987). Connections between layer 4B of area 17 and the thick cytochrome oxidase stripes of area 18 in the squirrel monkey. Journal of Neuroscience 7, 33713377.CrossRefGoogle ScholarPubMed
Lund, J.S. & Boothe, R.G. (1975). Interlaminar connections and pyramidal neuron Organization in the visual cortex, area 17, of the macaque monkey. Journal of Comparative Neurology 159, 305334.CrossRefGoogle Scholar
Lund, J.S., Lund, R.D., Hendrickson, A.E., Bunt, A.H. & Fuchs, A.F. (1975). The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. Journal of Comparative Neurology 164, 287304.CrossRefGoogle ScholarPubMed
Lund, J.S., Hendrickson, A.E., Ogren, M.P. & Tobin, E.A. (1981). Anatomical organization of primate visual cortex area VII. Journal of Comparative Neurology 202, 1945.CrossRefGoogle ScholarPubMed
Maunsell, J.H.R. & Van Essen, D.C. (1987). Topographic organization of the middle temporal visual area in the macaque monkey: representational biases and the relationship to callosal connections and myeloarchitectonic boundaries. Journal of Comparative Neurology 266, 535555.CrossRefGoogle ScholarPubMed
Ogren, M.P. & Hendrickson, A.E. (1977). The distribution of pulvinar terminals in visual areas 17 and 18 of the monkey. Brain Research 137, 343350.CrossRefGoogle ScholarPubMed
Rockland, K.S. (1985). A reticular pattern of intrinsic connections in primate area V2 (area 18). Journal of Comparative Neurology 235, 467478.CrossRefGoogle ScholarPubMed
Rockland, K.S. (1987). Subpopulations of axons from area V1 to V2 in macaque monkey, visualized by Phaseolus vulgaris (PHA). Society for Neuroscience Abstracts 12, 3.Google Scholar
Rockland, K.S. (1989). Bistratified distribution of terminal arbors of individual axons projecting from area V1 to MT in the macaque monkey. Visual Neuroscience 3, 155170.CrossRefGoogle Scholar
Rockland, K.S. & Pandya, D.N. (1979). Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Research 179, 320.CrossRefGoogle ScholarPubMed
Rockland, K.S. & Virga, A. (1989). Terminal arbors of individual “feedback” axons projecting from area V2 to V1 in the macaque monkey: a study using immunohistochemistry of anterogradely transported Phaseolus vulgaris-leucoagglutinin. Journal of Comparative Neurology 285, 5472.CrossRefGoogle ScholarPubMed
Schiller, P.H. & Malpeli, J.G. (1977). The effect of striate cortex cooling on area 18 cells in the monkey. Brain Research 126, 366369.CrossRefGoogle ScholarPubMed
Shipp, S. & Zeki, S. (1985). Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex. Nature 315, 322325.CrossRefGoogle ScholarPubMed
Tigges, J., Tigges, M., Anschel, S., Cross, N.A., Letbetter, W.D. & McBraide, R.L. (1981). Areal and laminar distribution of neurons interconnecting the central visual cortical areas 17, 18, 19, and MT in the squirrel monkey (Saimiri). Journal of Comparative Neurology 202, 539560.CrossRefGoogle Scholar
Tootell, R.B.H., Silverman, M.S., DeValois, R.L. & Jacobs, G.H. (1983). Functional organization of the second cortical visual area in primates. Science 220, 737739.CrossRefGoogle ScholarPubMed
Valverde, F. (1978). The organization of area 18 in the monkey. A Golgi study. Anatomy and Embryology 154, 305334.CrossRefGoogle ScholarPubMed
Van Essen, D.C. (1985). Functional organization of primate visual cortex. In Cerebral Cortex, Vol. 3, ed. Peters, A. & Jones, E.G., pp. 259329. New York: Plenum Press.Google Scholar
Van Essen, D.C., Newsome, W.T. & Bixby, J.L. (1982). The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey. Journal of Neuroscience 2, 265283.CrossRefGoogle ScholarPubMed
Van Essen, D.C., Newsome, W.T., Maunsell, J.H.R. & Bixby, J.L. (1986). The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: asymmetries, areal boundaries, and patchy connections. Journal of Comparative Neurology 244, 451480.CrossRefGoogle ScholarPubMed
Weller, R.E. & Kaas, J.H. (1983). Retinotopic patterns of connections of area 17 with visual areas V-II and MT in macaque monkeys. Journal of Comparative Neurology 220, 253279.CrossRefGoogle ScholarPubMed
Wong-Riley, M. (1978). Reciprocal connections between striate and prestriate cortex in the squirrel monkey as demonstrated by combined peroxidase histochemistry and autoradiography. Brain Research 147, 159164.CrossRefGoogle ScholarPubMed
Wong-Riley, M. (1979). Columnar cortico-cortical interconnections within the visual system of the squirrel and macaque monkeys. Brain Research 162, 201217.CrossRefGoogle ScholarPubMed
Wong-Riley, M. & Carroll, E.W. (1984). Quantitative light- and electron-microscopic analysis of cytochrome-oxidase rich zones in VII prestriate cortex of the squirrel monkey. Journal of Comparative Neurology 222, 1837.CrossRefGoogle Scholar
Zeki, S.M. (1969). Representation of the central fields in prestriate cortex of monkey. Brain Research 14, 271291.CrossRefGoogle ScholarPubMed
Zeki, S.M. (1970). Interhemispheric connections of prestriate cortex in monkey. Brain Research 19, 6375.CrossRefGoogle ScholarPubMed
Zeki, S.M. (1975). The functional organization of projections from striate to prestriate visual cortex in the rhesus monkey. Cold Spring Harbor Symposia on Quantitative Biology 40, 591600.CrossRefGoogle Scholar