Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-08T17:08:03.201Z Has data issue: false hasContentIssue false

Glutamate antagonists that block hyperpolarizing bipolar cells increase the release of dopamine from turtle retina

Published online by Cambridge University Press:  02 June 2009

Stuart D. Critz
Affiliation:
Sensory Sciences Center, Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston
Robert E. Marc
Affiliation:
Sensory Sciences Center, Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston

Abstract

Some neurochemical features of the neuronal circuitry regulating dopamine release were examined in the retina of the turtle, Pseudemys scripta elegans. Glutamate antagonists that block hyperpolarizing bipolar cells, such as 2,3 piperidine dicarboxylic acid (PDA), produced dose-dependent dopamine release. In contrast, the glutamate agonist 2-amino-4-phosphonobutyric acid (APB), which blocks depolarizing bipolar cell responses with high specificity, had no effect on the release of dopamine. The γ-aminobutyric acid (GABA) antagonist, bicuculline, also produced potent dose-dependent release of dopamine. The release of dopamine produced by PDA was blocked by exogenous GABA and muscimol, suggesting that the PDA-mediated release process was polysynaptic and involved a GABAergic synapse interposed between the bipolar and dopaminergic amacrine cells. The only other agents that produced dopamine release were chloride-free media and high extracellular K+; in particular, kainic acid and glutamate itself were ineffective. These results suggest that the primary neuronal chain mediating dopamine release in the turtle retina is: cone → hyperpolarizing bipolar cell → GABAergic amacrine cell → dopaminergic amacrine cell.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Besharse, J.C., Iuvone, P.M. & Pierce, M.E. (1988). Regulation of rhythmic photoreceptor metabolism: A role for post-receptoral neurons. In Progress in Retinal Research, Vol. 7, ed. Osborne, N. & Chader, G., pp. 2161. Oxford, England: Permagon Press.Google Scholar
Besharse, J.C. & Witkovsky, P. (1988). Light-evoked contraction of red cones in Xenopus eyecups is highly sensitive to green light. Investigative Ophthalmology and Visual Sciences Abstracts 29, 107.Google Scholar
Brooker, G., Harper, J.F., Terasaki, W.L. & Moylan, R.D. (1979). Radioimmunoassay of cyclic AMP and cyclic GMP. Advances in Cyclic Nucleotide Research 10, 233.Google ScholarPubMed
Burnside, B. & Naole, B. (1983). Retinomotor movements of photoreceptors and retinal pigment epithelium: Mechanisms and regulation. Progress in Retinal Research 2, 67109.CrossRefGoogle Scholar
Cervetto, L. & Macnichol, E.F. (1972). Inactivation of horizontal cells in turtle retina by glutamate and aspartate. Science 183, 417419.CrossRefGoogle Scholar
Collingridge, G.L., Kehl, S.J. & McLennan, H. (1983). The antagonism of amino acid-induced excitations of rat hippocampal CA1 neurones in vitro. Journal of Physiology (London) 334, 1931.CrossRefGoogle ScholarPubMed
Djamgoz, M.B.A., Kirsch, M. & Wagner, H.-J. (1989). Haloperidol suppresses light-induced spinule formation and biphasic responses of horizontal cells in fish (roach) retina. Neuroscience Letters 107, 200204.CrossRefGoogle ScholarPubMed
Dowling, J.E. & Ripps, H. (1973). Effects of magnesium on horizontal cell activity in the skate retina. Nature 242, 101103.CrossRefGoogle ScholarPubMed
Dowling, J.E. & Ehinger, B. (1975). Synaptic organization of the amine-containing interplexiform cells of the goldfish and Cebus monkey retinas. Science 188, 270273.CrossRefGoogle ScholarPubMed
Dowling, J.E. & Ehinger, B. (1978). The interplexiform cell system: I. Synapses of the dopaminergic neurons of the goldfish retina. Proceedings of the Royal Society B (London) 201, 726.Google ScholarPubMed
Dowling, J.E. & Watling, K.J. (1981). Dopaminergic mechanisms in the teleost retina, II. Factors affecting the accumulation of cyclic AMP in pieces of intact carp retina. Journal of Neurochemistry 36, 569579.CrossRefGoogle ScholarPubMed
Dowling, J.E., Lasater, E.M., Van Buskirk, R. & Watling, K.J. (1983). Pharmacological properties of isolated fish horizontal cells. Vision Research 23, 421432.CrossRefGoogle ScholarPubMed
Dubocovich, M.L. & Weiner, N. (1983). Enkephalins modulate [3H]- dopamine release from rabbit retina in vitro. Journal of Pharma- cology and Experimental Therapeutics 224, 634639.Google ScholarPubMed
Ehinger, B. (1982). Neurotransmitter systems in the retina. Retina 2, 305321.CrossRefGoogle ScholarPubMed
Ehringer, B.Otterson, O.P., Storm-Mathisen, J. & Dowling, J.E. (1988). Bipolar cells in the turtle retina are strongly immunoreactive for glutamate. Proceedings of the National Academy of Sciences of the U.S.A. 85, 83218325.CrossRefGoogle Scholar
Eldred, W.D. & Pollard, J. (1988). Synaptic analysis of neurons with tyrosine hydroxylase-like immunoreactivity in turtle retina. Investigative Ophthalmology and Visual Sciences Abstracts 29, 198.Google Scholar
Frederick, J.M., Rayborn, M.E., Laties, A.M., Lam, D.M.-K. & Hollyfield, J.G. (1982). Dopaminergic neurons in the human retina. Journal of Comparative Neurology 210, 6579.CrossRefGoogle ScholarPubMed
Ganong, A.H., Jones, A.W., Watkins, J.C. & Cotman, C.W. (1986). Parallel antagonism of synaptic transmission and kainate/quisqualate responses in the hippocampus by piperizine-2,3-dicarboxylic acid analogs. Journal of Neurosciences 6, 930937.CrossRefGoogle ScholarPubMed
Hamasaki, D.I., Trattler, W.B. & Hajek, A.S. (1986). Light on suppresses and light off enhances the release of dopamine from the cat's retina. Neuroscience Letters 68, 112116.CrossRefGoogle Scholar
Hedden, W.L. & Dowling, J.E. (1978). The interplexiform cell system, II. Effects of dopamine on goldfish retinal neurons. Proceedings of the Royal Society B (London) 201, 2755.Google Scholar
Ishida, A.T. & Fain, G.L. (1981). D-aspartate potentiates the effects of L-glutamate on horizontal cells in goldfish retina. Proceedings of the National Academy of Sciences of the U.S.A. 78, 58905894.CrossRefGoogle ScholarPubMed
Ishita, S., Negishi, K., Teranishi, T., Shimada, Y. & Kato, S. (1988). GABAergic inhibition on dopamine cells of the fish retina: A [3H]- dopamine release study with isolated cell fractions. Journal of Neurochemistry 50, 16.CrossRefGoogle Scholar
Iuvone, P.M., Galli, C.L., Garrison-Gund, C.K. & Neff, N.H. (1978). Light stimulates tyrosine hydroxylase activity and dopamine synthesis in retinal amacrine neurons. Science 202, 901902.CrossRefGoogle ScholarPubMed
Iuvone, P.M. & Besharse, J.C. (1986). Dopamine receptor-mediated inhibition of serotonin N-acetyltransferase activity in the retina. British Journal of Pharmacology 41, 571591.Google Scholar
Jensen, R.J. & Daw, N.W. (1986). Effects of dopamine and its agonists and antagonists on the receptive-field properties of ganglion cells in the rabbit retina. Neuroscience 17, 837855.CrossRefGoogle ScholarPubMed
Kolb, H. (1982). The morphology of the bipolar cells, amacrine cells and ganglion cells in the turtle Pseudemys scripta elegans. Philosophical Transactions of the Royal Society B (London) 298, 355393.Google ScholarPubMed
Kolb, H., Cline, C., Wang, H.H. & Brecha, N. (1987). Distribution and morphology of dopaminergic amacrine cells in the retina of the turtle (Pseudemys scripta elegans). Journal of Neurocytology 16, 577588.CrossRefGoogle ScholarPubMed
Kramer, S.G. (1971). Dopamine: A retinal neurotransmitter: I. Retinal uptake, storage, and light-stimulated release of retinal [3H]- dopamine in vitro. Investigative Ophthalmology 10, 438452.Google Scholar
Lasater, E.M. (1987). Retinal horizontal cell gap junctional conductance is modulated by dopamine through a cyclic-AMP dependent protein kinase. Proceedings of the National Academy of Sciences of the U.S.A. 84, 73197323.CrossRefGoogle ScholarPubMed
Lasater, E.M. & Dowling, J.E. (1985). Dopamine decreases conductance of the electrical junctions between cultured retinal horizontal cells. Proceedings of the National Academy of Sciences of the U.S.A. 82, 30253029.CrossRefGoogle ScholarPubMed
Mangel, S.C. & Dowling, J.E. (1985). Responsiveness and receptive-field size of carp horizontal cells are reduced by prolonged darkness and dopamine. Science 229, 11071109.CrossRefGoogle ScholarPubMed
Mangel, S.C. & Dowling, J.E. (1987). The interplexiform-horizontal cell system of the fish retina: Effects of dopamine, light stimulation and time in the dark. Proceedings of the Royal Society B (London) 231, 91121.Google ScholarPubMed
Marc, R.E. (1982). Spatial organization of neurochemically classified interneurons of the goldfish retina —I. Local patterns. Vision Research 22, 589608.CrossRefGoogle ScholarPubMed
Marc, R.E., Liu, W.-L.S., Scholz, K. & Muller, J.F. (1988). Serotonergic and serotonin accumulating neurons in the goldfish retina. Journal of Neuroscience 8, 34273450.CrossRefGoogle ScholarPubMed
Marc, R.E., Liu, W.-L.S., Kalloniatis, M., Raiguel, S. & Van Haesendonck, E. (1990). Patterns of glutamate immunoreactivity in Ihe goldfish retina. Journal of Neuroscience 10, 40064034.CrossRefGoogle Scholar
Marshburn, P.B. & Iuvone, P.M. (1981). The role of GABA in the regulation of the dopamine/tyrosine hydroxylase-containing neurons of the rat retina. Brain Research 214, 335347.CrossRefGoogle ScholarPubMed
Massey, S.C. & Redburn, D.A. (1983). The cholinergic amacrine cells of rabbit retina receive ON and OFF input: An analysis of [3H]- ACh release using 2-amino-4-phosphonobutyric acid (APB) and chloride-free medium. Vision Research 23, 16151620.CrossRefGoogle ScholarPubMed
Massey, S.C. & Redburn, D.A. (1987). Transmitter circuits in the vertebrate retina. Progress in Neurobiology 28, 5596.CrossRefGoogle ScholarPubMed
McMahon, D.G. & Dowling, J.E. (1987). Treatments which uncouple teleost horizontal cells promote phosphorylation of a membrane protein. Society for Neuroscience Abstracts 13, 24.Google Scholar
Miller, R.F. & Slaughter, M.M. (1985). Excitatory amino acid receptors in the vertebrate retina. In Retinal Transmitters and Modulators, Vol. 2, ed. Morgan, W.W., pp. 123160. Boca Raton, Florida: CRC Press, Inc.Google Scholar
Negishi, K. & Drujan, B.D. (1979). Effects of catecholamines and related compounds on the horizontal cells of fish retina. Journal of Neuroscience Research 4, 311334.CrossRefGoogle ScholarPubMed
Negishi, K., Teranishi, T., Hidaka, S. & Naka, K.-I. (1983). Regional differences in density of monoamine-accumulating cells of carp and catfish retinas. Journal of Neuroscience Research 9, 211222.CrossRefGoogle ScholarPubMed
Nyugen-Legros, J., Versaux-Batteri, C., Vigny, A. & Rasux, N. (1985). Tyrosine hydroxylase immunocytochemistry fails to demonstrate dopaminergic interplexiform cells in the turtle retina. Brain Research 339, 323328.CrossRefGoogle Scholar
O'connor, P., Dorison, S.J., Watling, K.J. & Dowling, J.E. (1986). Factors affecting release of dopamine from perfused carp retina. Journal of Neuroscience 6, 18571865.CrossRefGoogle ScholarPubMed
O'connor, P.M., Zucker, C.L. & Dowling, J.E. (1987). Regulation of dopamine release from interplexiform cell processes in the outer plexiform layer of the carp retina. Journal of Neurochemistry 49, 916920.CrossRefGoogle ScholarPubMed
Piccolino, M., Neyton, J., Witkovsky, P. & Gerschenfeld, H.M. (1982). γ-Aminobutyric acid antagonists decrease junctional communication between L-horizontal cells of the turtle retina. Proceedings of the National Academy of Sciences of the U.S.A. 79, 36713675.CrossRefGoogle Scholar
Piccolino, M., Neyton, J. & Gerschenfeld, H.M. (1984). Decrease of gap junctional permeability induced by dopamine and cyclic adenosine 3′,5′-monophosphate in horizontal cell of the turtle retina. Journal of Neuroscience 4, 24772488.CrossRefGoogle ScholarPubMed
Piccolino, M., Witkovsky, P. & Trimarchi, C. (1987). Dopaminergic mechanisms underlying the reduction of electrical coupling between horizontal cells of the turtle retina induced by d-amphetamine, bicuculline, and veratridine. Journal of Neuroscience 7, 22732284.Google ScholarPubMed
Proll, M.A. & Morgan, W.W. (1983). Use of gamma-aminobutyric acid (GABA)-transaminase inhibitors and a GABA-uptake inhibitor to investigate the influence of GABA neurons on dopamine-containing amacrine cells of the rat retina. Journal of Pharmacological and Experimental Therapeutics 227, 627632.Google Scholar
Schütte, M. (1990). Dopaminergic cells in the turtle retina exhibit ascending processes. Investigative Ophthalmology and Visual Sciences Abstracts 31, 208.Google Scholar
Slaughter, M.M. & Miller, R.F. (1981). 2-Amino-4-phosphonobutyric acid: A new tool for retina research. Science 211, 182185.CrossRefGoogle ScholarPubMed
Slaughter, M.M. & Miller, R.F. (1983). An excitatory amino acid antagonist blocks cone input to sign-inverting retinal neurons. Science 219, 12301232.CrossRefGoogle Scholar
Sternberger, L.A., Hardy, P.H. Jr, Cuculis, J.J. & Meyer, H.G. (1970). The unlabeled antibody-enzyme method of immunocytochemistry. Preparation and properties of soluble antigen-antibody complex (horseradish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. Journal of Histochemistry and Cytochemistry 18, 315333.CrossRefGoogle ScholarPubMed
Su, Y.Y.T. & Watt, C.B. (1987). Interaction between enkephalin and dopamine in the avian retina. Brain Research 423, 6370.Google ScholarPubMed
Teranishi, T., Negishi, K. & Kato, S. (1983). Dopamine modulates S-potential amplitude and dye-coupling between external horizontal cells in carp retina. Nature 301, 243246.CrossRefGoogle ScholarPubMed
Teranishi, T., Negishi, N. & Kato, S. (1984). Regulatory effect of dopamine on spatial properties of horizontal cells in carp retina. Journal of Neuroscience 4, 12711280.CrossRefGoogle ScholarPubMed
Teranishi, T. & Negishi, K. (1986). Dendritic morphology of dopaminergic cells revealed by intracellular injection of Lucifer Yellow in fixed carp retina. Brain Research 370, 196199.CrossRefGoogle ScholarPubMed
Tornquist, K., Yang, X.-L. & Dowling, J.E. (1988). Modulation of cone horizontal cell activity in the teleost fish retina. III. Effects of prolonged darkness of electrical coupling between horizontal cells. Journal of Neuroscience 8, 22792288.CrossRefGoogle Scholar
Watling, K.J. & Dowling, J.E. (1983). Dopaminergic mechanisms in the teleost retina. I. Dopamine-sensitive adenylate cyclase in homogenates of carp retina; effects of agonists, antagonists, and ergots. Journal of Neurochemistry 36, 559568.CrossRefGoogle Scholar
Weiler, R., Kohler, K., Kirsch, M. & Wagner, H.-J. (1988). Glutamate and dopamine modulate synaptic plasticity in horizontal cell dendrites of fish retina. Neuroscience Letters 87, 205209.CrossRefGoogle ScholarPubMed
Weiler, R. & Ball, A. (1989). Enkephalinergic modulation of the dopamine system in the turtle retina. Visual Neuroscience 3, 445461.CrossRefGoogle ScholarPubMed
Witkovsky, P., Eldred, W. & Karten, H.J. (1984). Catecholamine and indoleamine-containing neurons in the turtle retina. Journal of Comparative Neurology 228, 217225.CrossRefGoogle ScholarPubMed
Witkovsky, P., Stone, S. & Besharse, J. (1987). Dopamine mimics light-adaptation in horizontal cells of the Xenopus retina. Society for Neuroscience Abstracts 13, 24.Google Scholar
Wülle, I., Kirsch, M. & Wagner, H.-j. (1990). Cyclic changes in dopamine and DOPAC content, and tyrosine hydroxylase activity in the retina of a cichlid fish. Brain Research 515, 163167.CrossRefGoogle ScholarPubMed
Yang, X.-L., Tornquist, K. & Dowling, J.E. (1988a). Modulation of cone horizontal cell activity in the teleost fish retina. I. Effects of prolonged darkness and background illumination on light responsiveness. Journal of Neuroscience 8, 22592268.CrossRefGoogle ScholarPubMed
Yang, X.-L., Tornquist, K. & Dowling, J.E. (1988b). Modulation of cone horizontal cell activity in the fish retina. II. Role of interplexiform cells and dopamine in regulating light responsiveness. Journal of Neuroscience 8, 22692278.CrossRefGoogle ScholarPubMed