Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-17T15:40:37.245Z Has data issue: false hasContentIssue false

The contribution of the outer retina to color constancy: A general model for color constancy synthesized from primate and fish data

Published online by Cambridge University Press:  26 June 2007

M.T. VANLEEUWEN
Affiliation:
Retinal Signal Processing, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
C. JOSELEVITCH
Affiliation:
Retinal Signal Processing, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
I. FAHRENFORT
Affiliation:
Retinal Signal Processing, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
M. KAMERMANS
Affiliation:
Retinal Signal Processing, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands

Abstract

Color constancy is one of the most impressive features of color vision systems. Although the phenomenon has been studied for decades, its underlying neuronal mechanism remains unresolved. Literature indicates an early, possibly retinal mechanism and a late, possibly cortical mechanism. The early mechanism seems to involve chromatic spatial integration and performs the critical calculations for color constancy. The late mechanism seems to make the color manifest. We briefly review the current evidence for each mechanism. We discuss in more detail a model for the early mechanism that is based on direct measurements of goldfish outer retinal processing and induces color constancy and color contrast. In this study we extrapolate this model to primate retina, illustrating that it is highly likely that a similar mechanism is also present in primates. The logical consequence of our experimental work in goldfish and our model is that the wiring of the cone/horizontal cell system sets the reference point for color vision (i.e., it sets the white point for that animal).

Type
Research Article
Copyright
© 2007 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barbur, J.L., de Cunha, D., Williams, C.B. & Plant, G. (2002). Experimental studies of instantaneous colour constancy-dynamic colour matching under rapid changes of the illuminant. Proceedings of the International Society for Optical Engineering 4662, 298314.Google Scholar
Bauml, K.H. (1999). Simultaneous color constancy: How surface color perception varies with the illuminant. Vision Research 39, 15311550.Google Scholar
Bilotta, J. & Powers, M.K. (1991). Spatial contrast sensitivity of goldfish: Mean luminance, temporal frequency and a new psychophysical technique. Vision Research 31, 577585.Google Scholar
Brainard, D.H. & Maloney, L.T. (2004). Perception of color and material properties in complex scenes. Journal of Vision 4, 24.Google Scholar
Brainard, D.H. & Wandell, B.A. (1992). Asymmetric color matching: How color appearance depends on the illuminant. Journal of the Optical Society of America.A, Optics, Image Science, and Vision 9, 14331448.Google Scholar
Brockerhoff, S.E., Dowling, J.E. & Hurley, J.B. (1998). Zebrafish retinal mutants. Vision Research 38, 13351339.Google Scholar
Brockerhoff, S.E., Hurley, J.B., Janssen-Bienhold, U., Neuhauss, S.C., Driever, W. & Dowling, J.E. (1995). A behavioral screen for isolating zebrafish mutants with visual system defects. Proceedings of the National Academy of Sciences of the United States of America 92, 1054510549.Google Scholar
Buchsbaum, G. & Gottschalk, A. (1983). Trichromacy, opponent colors coding and optimum colour information transmission in the retina. Proceedings of the Royal Society of London. Series B, Containing Papers of Biological Character 220, 89113.Google Scholar
Cadetti, L. & Thoreson, W.B. (2006). Feedback effects of horizontal cell membrane potential on cone calcium currents studied with simultaneous recordings. Journal of Neurophysiology 95, 19921995.Google Scholar
Chalupa, L.M. & Werner, J.S. (eds.) (2003). The Visual Neurosciences. (A Bradford Book) Cambridge, MA: The MIT Press.
Chen, D.M. & Stark, W.S. (1994). Electroretinographic analysis of ultraviolet sensitivity in juvenile and adult goldfish retinas. Vision Research 34, 29412944.Google Scholar
Chichilnisky, E.J. & Wandell, B.A. (1995). Photoreceptor sensitivity changes explain color appearance shifts induced by large uniform backgrounds in dichoptic matching. Vision Research 35, 239254.Google Scholar
Cornelissen, F.W. & Brenner, E. (1995). Simultaneous colour constancy revisited: An analysis of viewing strategies. Vision Research 35, 24312448.Google Scholar
Dacey, D.M. (2000). Parallel pathways for spectral coding in primate retina. Annual Review of Neuroscience 23, 743755.Google Scholar
Dacey, D.M., Lee, B.B., Stafford, D.K., Pokorny, J. & Smith, V.C. (1996). Horizontal cells of the primate retina: Cone specificity without spectral opponency. Science 271, 656659.Google Scholar
Daw, N.W. (1984). The psychology and physiology of colour vision. Trends in Neurosciences 7, 330335.Google Scholar
Dorr, S. & Neumeyer, C. (1996). The goldfish—a colour-constant animal. Perception 25, 243250.Google Scholar
Dorr, S. & Neumeyer, C. (1997). Simultaneous color contrast in goldfish. A quantitative study. Vision Research 37, 15811593.Google Scholar
Dorr, S. & Neumeyer, C. (2000). Color constancy in goldfish: The limits. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 186, 885896.Google Scholar
Fahrenfort, I., Habets, R.L., Spekreijse, H. & Kamermans, M. (1999). Intrinsic cone adaptation modulates feedback efficiency from horizontal cells to cones. The Journal of General Physiology 114, 511524.Google Scholar
Fain, G.L., Matthews, H.R. & Cornwall, M.C. (1996). Dark adaptation in vertebrate photoreceptors. Trends in Neurosciences 19, 502507.Google Scholar
Foster, D.H., Craven, B.J. & Sale, E.R. (1992). Immediate colour constancy. Ophthalmic & Physiological Optics 12, 157160.Google Scholar
Fukurotani, K. (1998). Color information coding of horizontal-cell responses in fish retina. Color Research and Application 7, 146148.Google Scholar
Gegenfurtner, K.R. & Kiper, D.C. (2003). Color vision. Annual Review of Neuroscience 26, 181206.Google Scholar
Hartline, H.K. (1938). The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. The American Journal of Physiology 121, 400415.Google Scholar
Hirasawa, H. & Kaneko, A. (2003). pH changes in the invaginating synaptic cleft mediate feedback from horizontal cells to cone photoreceptors by modulating Ca2+ channels. The Journal of General Physiology 122, 657671.Google Scholar
Hurlbert, A. & Wolf, K. (2004). Color contrast: A contributory mechanism to color constancy. Progress in Brain Research 144, 147160.Google Scholar
Ingle, D.J. (1985). The goldfish as a retinex animal. Science 227, 651654.Google Scholar
Jagger, W.S. & Muntz, W.R. (1993). Aquatic vision and the modulation transfer properties of unlighted and diffusely lighted natural waters. Vision Research 33, 17551763.Google Scholar
Kamermans, M., Fahrenfort, I., Schultz, K., Janssen-Bienhold, U., Sjoerdsma, T. & Weiler, R. (2001). Hemichannel-mediated inhibition in the outer retina. Science 292, 11781180.Google Scholar
Kamermans, M., Haak, J., Habraken, J.B.A. & Spekreijse, H. (1996). The size of the horizontal cell receptive fields adapts to the stimulus in the light adapted goldfish retina. Vision Research 36, 41054120.Google Scholar
Kamermans, M., Kraaij, D.A. & Spekreijse, H. (1998). The cone/horizontal cell network: A possible site for color constancy. Visual Neuroscience 15, 787797.Google Scholar
Kamermans, M. & Spekreijse, H. (1995). Spectral behavior of cone-driven horizontal cells in teleost retina. Progress in Retinal and Eye Research 14, 313360.Google Scholar
Kamermans, M., Van Dijk, B.W. & Spekreijse, H. (1991). Color opponency in cone-driven horizontal cells in carp retina. Aspecific pathways between cones and horizontal cells. The Journal of General Physiology 97, 819843.Google Scholar
Kamermans, M., Van Leeuwen, M.T., Numan, R., Sjoerdsma, T. & Fahrenfort, I. (2006). Surround Stimulation Leads to Potentiation of Ganglion Cells Center Responses. Investigative Ophthalmology & Visual Science 47, ARVO E-abstract.Google Scholar
Kaneko, A. & Tachibana, M. (1983). Double color-opponent receptive fields of carp bipolar cells. Vision Research 23, 381388.Google Scholar
Kitschmann, M. & Neumeyer, C. (2005). Generalization and categorization of spectral colors in goldfish I. Experiments with one training wavelength. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 191, 10251036.Google Scholar
Koutalos, Y. & Yau, K.W. (1996). Regulation of sensitivity in vertebrate rod photoreceptors by calcium. Trends in Neurosciences 19, 7381.CrossRefGoogle Scholar
Kraaij, D.A., Kamermans, M. & Spekreijse, H. (1998). Spectral sensitivity of the feedback signal from horizontal cells to cones in goldfish retina. Visual Neuroscience 15, 799808.Google Scholar
Kraaij, D.A., Spekreijse, H. & Kamermans, M. (2000). The nature of surround induced depolarizing responses in goldfish cones. The Journal of General Physiology 115, 114.Google Scholar
Kusunoki, M., Moutoussis, K. & Zeki, S. (2006). Effect of background colors on the tuning of color-selective cells in monkey area v4. Journal of Neurophysiology 95, 30473059.CrossRefGoogle Scholar
Land, E.H. (1964). The retinex. American Scientist 52, 247264.Google Scholar
Land, E.H., Hubel, D.H., Livingstone, M.S., Perry, S.H. & Burns, M.M. (1983). Colour-generating interactions across the corpus callosum. Nature 303, 616618.CrossRefGoogle Scholar
Lennie, P. & Movshon, J.A. (2005). Coding of color and form in the geniculostriate visual pathway (invited review). Journal of the Optical Society of America.A, Optics, Image Science, and Vision 22, 20132033.CrossRefGoogle Scholar
MacNichol, E.F. & Svaetichin, G. (1958). Electric responses from the isolated retinas of fishes. American Journal of Ophthalmology 46, 2646.CrossRefGoogle Scholar
Moutoussis, K. & Zeki, S. (2000). A psychophysical dissection of the brain sites involved in color-generating comparisons. Proceedings of the National Academy of Sciences of the United States of America 97, 80698074.CrossRefGoogle Scholar
Neumeyer, C. (1986). Wavelength discrimination in the goldfish. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 158, 203213.CrossRefGoogle Scholar
Neumeyer, C. (2003). Wavelength dependence of visual acuity in goldfish. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 189, 811821.CrossRefGoogle Scholar
Neumeyer, C., Dorr, S., Fritsch, J. & Kardelky, C. (2002). Colour constancy in goldfish and man: Influence of surround size and lightness. Perception 31, 171187.CrossRefGoogle Scholar
Norton, A.L., Spekreijse, H., Wolbarsht, M.L. & Wagner, H.G. (1968). Receptive field organization of the S-potential. Science 160, 10211022.CrossRefGoogle Scholar
Packer, O.S. & Dacey, D.M. (2002). Receptive field structure of H1 horizontal cells in macaque monkey retina. Journal of Vision 2, 272292.Google Scholar
Patterson, W.F., McDowell, A.L., Hughes, A. & Bilotta, J. (2002). Opponent and nonopponent contributions to the zebrafish electroretinogram using heterochromatic flicker photometry. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 188, 283293.CrossRefGoogle Scholar
Pöppel, E. (1986). Long-range colour-generating interactions across the retina. Nature 320, 523525.CrossRefGoogle Scholar
Poralla, J. & Neumeyer, C. (2006). Generalization and categorization of spectral colors in goldfish. II. Experiments with two and six training wavelengths. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 192, 469479.Google Scholar
Pottek, M., Hoppenstedt, W., Janssen-Bienhold, U., Schultz, K., Perlman, I. & Weiler, R. (2003). Contribution of connexin26 to electrical feedback inhibition in the turtle retina. The Journal of Comparative Neurology 466, 468477.CrossRefGoogle Scholar
Rinner, O. & Gegenfurtner, K.R. (2000). Time course of chromatic adaptation for color appearance and discrimination. Vision Research 40, 18131826.CrossRefGoogle Scholar
Rinner, O. & Gegenfurtner, K.R. (2002). Cone contributions to colour constancy. Perception 31, 733746.CrossRefGoogle Scholar
Shimbo, K., Toyoda, J.I., Kondo, H. & Kujiraoka, T. (2000). Color-opponent responses of small and giant bipolar cells in the carp retina. Visual Neuroscience 17, 609621.CrossRefGoogle Scholar
Sjoerdsma, T., Kamermans, M. & Spekreijse, H. (1996). Modulating wavelength discrimination in goldfish with ethambutol and stimulus intensity. Vision Research 36, 35193525.CrossRefGoogle Scholar
Spekreijse, H., Wagner, H.G. & Wolbarsht, M.L. (1972). Spectral and spatial coding of ganglion cell responses in goldfish retina. Journal of Neurophysiology 35, 7386.Google Scholar
Spekreijse, H., Wietsma, J.J. & Neumeyer, C. (1991). Induced color blindness in goldfish: A behavioral and electrophysiological study. Vision Research 31, 551562.CrossRefGoogle Scholar
Stell, W.K. & Lightfoot, D.O. (1975). Color-specific interconnections of cones and horizontal cells in the retina of the goldfish. The Journal of Comparative Neurology 159, 473502.CrossRefGoogle Scholar
Stiles, W.S. & Burch, J.M. (1959). NPL colour-matching investigation: Final report. Optica Acta 6, 126.Google Scholar
Tomita, T. (1965). Electrophysiological study of the mechanisms subserving color coding in the fish retina. Cold Spring Harbor Symposia on Quantitative Biology 30, 559566.CrossRefGoogle Scholar
Verweij, J., Hornstein, E.P. & Schnapf, J.L. (2003). Surround antagonism in macaque cone photoreceptors. The Journal of Neuroscience 23, 1024910257.Google Scholar
Verweij, J., Kamermans, M. & Spekreijse, H. (1996). Horizontal cells feed back to cones by shifting the cone calcium-current activation range. Vision Research 36, 39433953.CrossRefGoogle Scholar
von Kries, J. (1905). Die Gesichtsempfindugen. In Handbuch der Physiologie de Menschen, ed. Nagel, W., pp. 109282. Vieweg, Braunschweig.
Wachtler, T., Sejnowski, T.J. & Albright, T.D. (2003). Representation of color stimuli in awake macaque primary visual cortex. Neuron 37, 681691.CrossRefGoogle Scholar
Wagner, H.G., MacNichol, E.F. & Wolbarsht, M.L. (1960). The response properties of single ganglion cells in the goldfish retina. The Journal of General Physiology 43, 4362.Google Scholar
Wagner, H.G., MacNichol, E.F. & Wolbarsht, M.L. (1963). Functional basis for On-center and Off-center receptive fields in the retina. Journal of the Optical Society of America A: Optics, Image Science, and Vision 53, 6670.CrossRefGoogle Scholar
Zeki, S. (1980). The representation of colours in the cerebral cortex. Nature 284, 412418.CrossRefGoogle Scholar
Zeki, S. (1983a). Colour coding in the cerebral cortex: The reaction of cells in monkey visual cortex to wavelengths and colours. Neuroscience 9, 741765.Google Scholar
Zeki, S. (1983b). Colour coding in the cerebral cortex: The responses of wavelength-selective and colour-coded cells in monkey visual cortex to changes in wavelength composition. Neuroscience 9, 767781.Google Scholar
Zeki, S. (1983c). The relationship between wavelength and color studied in single cells of monkey striate cortex. Progress in Brain Research 58, 219227.Google Scholar