Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T21:58:36.925Z Has data issue: false hasContentIssue false

The complexity of the afterpotential of rabbit A-type horizontal cells

Published online by Cambridge University Press:  30 January 2007

R. HANITZSCH
Affiliation:
Carl-Ludwig-Institute of Physiology, University of Leipzig, Leipzig, Germany
L. KÜPPERS-TIEDT
Affiliation:
Carl-Ludwig-Institute of Physiology, University of Leipzig, Leipzig, Germany

Abstract

Afterpotentials of A-type horizontal cells (HCs) are believed to be rod-induced. They are, however, complex potentials and evidently of multiple causation. That part of the HC potential immediately after light-off is not entirely rod-determined because it has the same spectral sensitivity as the response to light-on, which is cone-induced with only some rod influence. It persists during a strong blue adapting light, which suppresses rod activity. The afterpotential may also be influenced by feedback from HCs to photoreceptors. The later part of the afterpotentials of A-type HCs is, however, rod dominated, as are the afterpotentials of axon terminals of B-type HCs.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bloomfield, S.A. & Miller, R.F. (1982). A physiological and morphological study of the horizontal cell types of the rabbit retina. Journal of Comparative Neurology 208, 288303.CrossRefGoogle Scholar
Dacheux, R. & Raviola, E. (1982). Horizontal cells in the retina of the rabbit. Journal of Neuroscience 2, 14861493.Google Scholar
De Monasterio, F.M. (1978). Spectral interactions in horizontal and ganglion cells of the isolated and arterially-perfused rabbit retina. Brain Research 150, 239258.CrossRefGoogle Scholar
Dowling, J.E. (1987). The Retina. An approachable part of the brain. Cambridge, Massachusetts and London: Harvard University Press.
Fahrenfort, I., Habets, R.L., Spekreijse, H., & Kamermans, M. (1999). Intrinsic cone adaptation modulates feedback efficiency from horizontal cells to cones. Journal of General Physiology 114, 511524.CrossRefGoogle Scholar
Fahrenfort, I., Sjoerdsma, T., & Kamermans, M. (2004). Intracellular acidification inhibits feedback responses in both cones and horizontal cells in the goldfish retina. Leipfig, Germany: The Association for Research in Vision and Ophthalmology, 2004 Annual meeting, Abstract session 116, program number 1086.
Hanitzsch, R. & Bornschein, H. (1965). Spezielle Überlebensbedingungen für isolierte Netzhäute verschiedener Warmblüter. Experientia 21, 484.CrossRefGoogle Scholar
Hanitzsch, R., Tomita, T., & Wagner, H. (1984). A chamber preserving cellular function of the isolated rabbit retina suited for extracellular and intracellular recording. Ophthalmic Research 16, 2730.CrossRefGoogle Scholar
Hanitzsch, R. & Küppers, L. (2001). The influence of HEPES on light responses of rabbit horizontal cells. Vision Research 41, 21652172.CrossRefGoogle Scholar
Hirasawa, H. & Kaneko, A. (2003). pH changes in the invaginating cleft mediate feedback from horizontal cells to cone photoreceptors by modulating Ca2+ channels. Journal General Physiology 122, 657671.CrossRefGoogle Scholar
Ksinsik, R. (1967). Adaptive parameter der blauverschiebung der spektralsensivität des kaninchenauges. Albrecht v. Graefes Archiv klinische Ophthalmologie 172, 112124.CrossRefGoogle Scholar
Kolb, H. (1994). The architecture of functional circuits in the vertebrate retina. The Proctor Lecture. Investigative Ophthalmology and Visual Science 35, 23852404.Google Scholar
Nelson, R., v.Lützow, A., Kolb, H., & Gouras, P. (1975). Horizontal cells in cat retina with independent dendritic systems. Science 189, 137139.CrossRefGoogle Scholar
Nelson, R. (1977). Cat cones have rod input: a comparison of the response properties of cones and horizontal cell bodies in the retina of the cat. Journal of Comparative Neurology 172, 109136.CrossRefGoogle Scholar
Niemeyer, G. & Gouras, P. (1973). Rod and cone signals in S-potentials of the isolated perfused cat eye. Vision Research 13, 16031612.CrossRefGoogle Scholar
Peichl, L., Sandmann, D., & Boycott, B.B. (1998). Comparative anatomy and function of mammalian horizontal cells. In Development and Organization of the Retina, ed. Chalupa, L., pp. 147172. New York: Plenum Press.CrossRef
Pflug, R., Nelson, R., & Ahnelt, P.K. (1990). Background-induced flicker enhancement in cat retinal horizontal cells. I. Temporal and spectral properties. Journal of Neurophysiology 64, 313325.Google Scholar
Raviola, E. & Dacheux, R.F. (1990). Axonless horizontal cells of the rabbit retina: synaptic connections and origin of the rod aftereffect. Journal of Neurocytology 19, 731736.CrossRefGoogle Scholar
Schneeweis, D.M. & Schnapf, J.L. (1999). The photovoltage of macaque cone photoreceptors: Adaptation, noise, and kinetics. Journal Neuroscience 19, 12031216.Google Scholar
Steinberg, R.H. (1969). The rod aftereffect in S-potentials from the cat retina. Vision Research 9, 13451355.CrossRefGoogle Scholar
Thomas, R.C. (1977). The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurones. Journal Physiology 273, 317338.CrossRefGoogle Scholar
Vigh, J. & Witkovsky, P. (1999). Sub-millimolar cobalt selectively inhibits the receptive field surround of retinal neurons. Visual Neuroscience 16, 159168.CrossRefGoogle Scholar
Wässle, H. & Boycott, B.B. (1991). Functional architecture of the mammalian retina. Physiological Reviews 71, 447480.Google Scholar
Wu, S.M. (1994). Synaptic transmission in the outer retina. Annual Reviews of Physiology 56, 141168.CrossRefGoogle Scholar