Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-20T07:36:19.310Z Has data issue: false hasContentIssue false

Cell type-specific and light-dependent expression of Rab1 and Rab6 GTPases in mammalian retinas

Published online by Cambridge University Press:  11 December 2009

WEI HUANG
Affiliation:
Department of Structural and Cellular Biology, School of Medicine, Tulane University, New Orleans, Louisiana
GUANGYU WU
Affiliation:
Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
GUO-YONG WANG*
Affiliation:
Department of Structural and Cellular Biology, School of Medicine, Tulane University, New Orleans, Louisiana
*
*Address correspondence and reprint requests to: Guo-Yong Wang, Department of Structural and Cellular Biology, School of Medicine, Tulane University, 1430 Tulane Avenue, SL-49, New Orleans, LA 70112. E-mail: gwang@tulane.edu

Abstract

The Ras-like Rab1 and Rab6 GTPases modulate protein traffic along the early secretory pathway and are involved in the regulation of maturation of rhodopsin in the outer retina. However, Rab GTPases have not been studied in the inner retinas. Here, we analyzed the anatomatic distribution and expression of Rab1 and Rab6 in the mouse and rat retinas by immunohistochemistry and immunoblotting. We found that Rab1 was specifically expressed in the rod bipolar cells, while Rab6 was expressed in a different cell type(s) from rod bipolar cells in the inner retina. We also demonstrated that expression of Rab1 and Rab6 was increased with light. These data provided the first evidence implicating that Rab1 and Rab6 may be involved in the regulation of the retinal adaptation.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antony, C., Cibert, C., Geraud, G., Santa Maria, A., Maro, B., Mayau, V. & Goud, B. (1992). The small GTP-binding protein rab6p is distributed from medial Golgi to the trans-Golgi network as determined by a confocal microscopic approach. Journal of Cell Science 103(Pt 3), 785796.CrossRefGoogle Scholar
Behrens, U.D., Kasten, P. & Wagner, H.J. (1998). Adaptation-dependent plasticity of rod bipolar cell axon terminal morphology in the rat retina. Cell and Tissue Research 294, 243251.CrossRefGoogle ScholarPubMed
Bui, B.V., Hu, R.G., Acosta, M.L., Donaldson, P., Vingrys, A.J. & Kalloniatis, M. (2009). Glutamate metabolic pathways and retinal function. Journal of Neurochemistry 111, 589599.CrossRefGoogle ScholarPubMed
Caminos, E., Velasco, A., Jarrin, M., Lillo, C., Jimeno, D., Aijon, J. & Lara, J.M. (2000). A comparative study of protein kinase C-like immunoreactive cells in the retina. Brain, Behavior and Evolution 56, 330339.CrossRefGoogle ScholarPubMed
Darchen, F., Zahraoui, A., Hammel, F., Monteils, M.P., Tavitian, A. & Scherman, D. (1990). Association of the GTP-binding protein Rab3A with bovine adrenal chromaffin granules. Proceedings of the National Academy of Sciences of the United States of America 87, 56925696.CrossRefGoogle ScholarPubMed
Deretic, D. (1997). Rab proteins and post-Golgi trafficking of rhodopsin in photoreceptor cells. Electrophoresis 18, 25372541.CrossRefGoogle ScholarPubMed
Deretic, D. (1998). Post-Golgi trafficking of rhodopsin in retinal photoreceptors. Eye 12(Pt 3b), 526530.CrossRefGoogle ScholarPubMed
Deretic, D. & Papermaster, D.S. (1993). Rab6 is associated with a compartment that transports rhodopsin from the trans-Golgi to the site of rod outer segment disk formation in frog retinal photoreceptors. Journal of Cell Science 106(Pt 3), 803813.CrossRefGoogle Scholar
Dong, C. & Wu, G. (2007). Regulation of anterograde transport of adrenergic and angiotensin II receptors by Rab2 and Rab6 GTPases. Cellular Signalling 19, 23882399.CrossRefGoogle ScholarPubMed
Dunn, F.A. & Rieke, F. (2006). The impact of photoreceptor noise on retinal gain controls. Current Opinion in Neurobiology 16, 363370.CrossRefGoogle ScholarPubMed
Fain, G.L., Matthews, H.R., Cornwall, M.C. & Koutalos, Y. (2001). Adaptation in vertebrate photoreceptors. Physiological Reviews 81, 117151.CrossRefGoogle ScholarPubMed
Feldmann, G., Durand-Schneider, A.M. & Goud, B. (1995). Behaviour of the small GTP-binding protein rab6 in the liver of normal rats and rats presenting an acute inflammatory reaction. Biology of the Cell 83, 121125.CrossRefGoogle ScholarPubMed
Filipeanu, C.M., Zhou, F., Claycomb, W.C. & Wu, G. (2004). Regulation of the cell surface expression and function of angiotensin II type 1 receptor by Rab1-mediated endoplasmic reticulum-to-Golgi transport in cardiac myocytes. The Journal of Biological Chemistry 279, 4107741084.CrossRefGoogle ScholarPubMed
Filipeanu, C.M., Zhou, F., Fugetta, E.K. & Wu, G. (2006). Differential regulation of the cell-surface targeting and function of beta- and alpha1-adrenergic receptors by Rab1 GTPase in cardiac myocytes. Molecular Pharmacology 69, 15711578.CrossRefGoogle ScholarPubMed
Fischer Von Mollard, G., Mignery, G.A., Baumert, M., Perin, M.S., Hanson, T.J., Burger, P.M., Jahn, R. & Sudhof, T.C. (1990). rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles. Proceedings of the National Academy of Sciences of the United States of America 87, 19881992.CrossRefGoogle ScholarPubMed
Goud, B., Zahraoui, A., Tavitian, A. & Saraste, J. (1990). Small GTP-binding protein associated with Golgi cisternae. Nature 345, 553556.CrossRefGoogle ScholarPubMed
Green, D.G., Dowling, J.E., Siegel, I.M. & Ripps, H. (1975). Retinal mechanisms of visual adaptation in the skate. The Journal of General Physiology 65, 483502.CrossRefGoogle ScholarPubMed
Green, D.G. & Powers, M.K. (1982). Mechanisms of light adaptation in rat retina. Vision Research 22, 209216.CrossRefGoogle ScholarPubMed
Greferath, U., Grunert, U. & Wassle, H. (1990). Rod bipolar cells in the mammalian retina show protein kinase C-like immunoreactivity. The Journal of Comparative Neurology 301, 433442.CrossRefGoogle ScholarPubMed
Grunert, U. & Martin, P.R. (1991). Rod bipolar cells in the macaque monkey retina: Immunoreactivity and connectivity. The Journal of Neuroscience 11, 27422758.CrossRefGoogle ScholarPubMed
Jasmin, B.J., Goud, B., Camus, G. & Cartaud, J. (1992). The low molecular weight guanosine triphosphate-binding protein Rab6p associates with distinct post-Golgi vesicles in Torpedo marmorata electrocytes. Neuroscience 49, 849855.CrossRefGoogle ScholarPubMed
Jedd, G., Richardson, C., Litt, R. & Segev, N. (1995). The Ypt1 GTPase is essential for the first two steps of the yeast secretory pathway. The Journal of Cell Biology 131, 583590.CrossRefGoogle ScholarPubMed
Johannes, L., Tenza, D., Antony, C. & Goud, B. (1997). Retrograde transport of KDEL-bearing B-fragment of Shiga toxin. The Journal of Biological Chemistry 272, 1955419561.CrossRefGoogle ScholarPubMed
Karniguian, A., Zahraoui, A. & Tavitian, A. (1993). Identification of small GTP-binding rab proteins in human platelets: Thrombin-induced phosphorylation of rab3B, rab6, and rab8 proteins. Proceedings of the National Academy of Sciences of the United States of America 90, 76477651.CrossRefGoogle ScholarPubMed
Linser, P.J., Sorrentino, M. & Moscona, A.A. (1984). Cellular compartmentalization of carbonic anhydrase-C and glutamine synthetase in developing and mature mouse neural retina. Brain Research 315, 6571.CrossRefGoogle ScholarPubMed
Martinez, O. & Goud, B. (1998). Rab proteins. Biochimica et Biophysica Acta 1404, 101112.CrossRefGoogle ScholarPubMed
Naka, K.I., Chan, R.Y. & Yasui, S. (1979). Adaptation in catfish retina. Journal of Neurophysiology 42, 441454.CrossRefGoogle ScholarPubMed
Nuoffer, C., Davidson, H.W., Matteson, J., Meinkoth, J. & Balch, W.E. (1994). A GDP-bound of rab1 inhibits protein export from the endoplasmic reticulum and transport between Golgi compartments. The Journal of Cell Biology 125, 225237.CrossRefGoogle ScholarPubMed
Page-McCaw, P.S., Chung, S.C., Muto, A., Roeser, T., Staub, W., Finger-Baier, K.C., Korenbrot, J.I. & Baier, H. (2004). Retinal network adaptation to bright light requires tyrosinase. Nature Neuroscience 7, 13291336.CrossRefGoogle ScholarPubMed
Plutner, H., Cox, A.D., Pind, S., Khosravi-Far, R., Bourne, J.R., Schwaninger, R., Der, C.J. & Balch, W.E. (1991). Rab1b regulates vesicular transport between the endoplasmic reticulum and successive Golgi compartments. The Journal of Cell Biology 115, 3143.CrossRefGoogle ScholarPubMed
Pugh, E.N. Jr, Nikonov, S. & Lamb, T.D. (1999). Molecular mechanisms of vertebrate photoreceptor light adaptation. Current Opinion in Neurobiology 9, 410418.CrossRefGoogle ScholarPubMed
Riepe, R.E. & Norenburg, M.D. (1977). Muller cell localisation of glutamine synthetase in rat retina. Nature 268, 654655.CrossRefGoogle ScholarPubMed
Saraste, J., Lahtinen, U. & Goud, B. (1995). Localization of the small GTP-binding protein rab1p to early compartments of the secretory pathway. Journal of Cell Science 108(Pt 4), 15411552.CrossRefGoogle ScholarPubMed
Satoh, A., Tokunaga, F., Kawamura, S. & Ozaki, K. (1997). In situ inhibition of vesicle transport and protein processing in the dominant negative Rab1 mutant of Drosophila. Journal of Cell Science 110(Pt 23), 29432953.CrossRefGoogle ScholarPubMed
Shapley, R. & Enroth-Cugell, C. (1984) Visual adaptation and retinal gain controls. Progress in Retinal Research 3, 262343.CrossRefGoogle Scholar
Sharpe, L.T. & Stockman, A. (1999). Rod pathways: The importance of seeing nothing. Trends in Neurosciences 22, 497504.CrossRefGoogle ScholarPubMed
Shetty, K.M., Kurada, P. & O’Tousa, J.E. (1998). Rab6 regulation of rhodopsin transport in Drosophila. The Journal of Biological Chemistry 273, 2042520430.CrossRefGoogle ScholarPubMed
Sterling, P. & Demb, J.B. (2004). Retina. In The Synaptic Organization of the Brain, ed. Shepherd, G.M., pp. 217269. New York: Oxford University Press.CrossRefGoogle Scholar
Tisdale, E.J., Bourne, J.R., Khosravi-Far, R., Der, C.J. & Balch, W.E. (1992). GTP-binding mutants of rab1 and rab2 are potent inhibitors of vesicular transport from the endoplasmic reticulum to the Golgi complex. The Journal of Cell Biology 119, 749761.CrossRefGoogle ScholarPubMed
Tixier-Vidal, A., Barret, A., Picart, R., Mayau, V., Vogt, D., Wiedenmann, B. & Goud, B. (1993). The small GTP-binding protein, Rab6p, is associated with both Golgi and post-Golgi synaptophysin-containing membranes during synaptogenesis of hypothalamic neurons in culture. Journal of Cell Science 105(Pt 4), 935947.CrossRefGoogle ScholarPubMed
Vaquero, C.F., Velasco, A. & De La Villa, P. (1996). Protein kinase C localization in the synaptic terminal of rod bipolar cells. Neuroreport 7, 21762180.CrossRefGoogle ScholarPubMed
Wang, G.Y., Van Der List, D.A., Nemargut, J.P., Coombs, J.L. & Chalupa, L.M. (2007). The sensitivity of light-evoked responses of retinal ganglion cells is decreased in nitric oxide synthase gene knockout mice. Journal of Vision 7, 7, 113.CrossRefGoogle ScholarPubMed
Wu, G., Zhao, G. & He, Y. (2003). Distinct pathways for the trafficking of angiotensin II and adrenergic receptors from the endoplasmic reticulum to the cell surface: Rab1-independent transport of a G protein-coupled receptor. The Journal of Biological Chemistry 278, 4706247069.CrossRefGoogle Scholar