Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-17T09:47:14.607Z Has data issue: false hasContentIssue false

Calretinin in the cat retina: Colocalizations with other calcium-binding proteins, GABA and glycine

Published online by Cambridge University Press:  02 June 2009

Dennis J. Goebel
Affiliation:
Department of Anatomy and Cell Biology, Wayne State University, Detroit
Roberta G. Pourcho
Affiliation:
Department of Anatomy and Cell Biology, Wayne State University, Detroit

Abstract

Immunocytochemical techniques were used to determine the distribution of the calcium-binding protein calretinin in the cat retina. Comparisons were made with parvalbumin and calbindin as well as with the inhibitory neurotransmitters GABA and glycine. Calretinin immunoreactivity was seen in horizontal cells and multiple subpopulations of amacrine and ganglion cells. Cone outer segments were also stained. Calbindin immunoreactivity was present in cone photoreceptors, horizontal cells, at least two subtypes of cone bipolar cell, numerous amacrine cells, and cells residing in the ganglion cell layer. Heavy staining for parvalbumin was found in both A- and B-type horizontal cells, distinct subpopulations of amacrine and ganglion cells, and a small population of cone photoreceptor cells. To confirm the identity of cone photoreceptors, comparisons were made with retinas stained for opsins specific for red/green or blue cones (Szé1 et al., 1986). The localization of parvalbumin corresponded with that of blue-type cones only whereas calretinin and calbindin staining showed the same distribution as both red/green and blue cones. Double-label immunofluorescence studies revealed colocalization of all three of the calcium-binding proteins in a number of neurons including horizontal cells and AII amacrine cells. To assess a possible transmitter-specific relationship for calretinin, double-label studies were carried out with GABA and glycine. However, the staining patterns for each of these inhibitory amino acids differed substantially from that of calretinin. The possibility remains that calretinin and other calcium-binding proteins may play a role in neurotransmission through interactions with receptors or second-messenger agents.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arai, R., Jacobowitz, D.M. & Deura, S. (1993). Ultrastructural localization of calretinin immunoreactivity in lobule V of the rat cerebellum. Brain Research 613, 300304.CrossRefGoogle ScholarPubMed
Baimbridge, K.G., Celio, M.R. & Rogers, J.H. (1992). Calcium-binding proteins in the nervous system. Trends in Neuroscience 5, 303308.CrossRefGoogle Scholar
DiFiglia, M., Christakos, S. & Aronin, N. (1989). Ultrastructural localization of immunoreactive calbindin-D28k in the rat and monkey basal ganglia, including subcellular distribution with colloidal gold labeling. Journal of Comparative Neurology 279, 653665.CrossRefGoogle ScholarPubMed
Endo, T., Kobayashi, M., Kobayashi, S. & Onaya, T. (1985). Immunocytochemical and biochemical localization of parvalbumin in the retina. Cell and Tissue Research 243, 213217.Google Scholar
Gabriel, R. & Straznicky, C. (1992). Immunocytochemical localization of parvalbumin- and neurofilament triplet immunoreactivity in the cat retina: Colocalization in a subpopulation of AII amacrine cells. Brain Research 595, 133136.CrossRefGoogle Scholar
Glezer, I.I., Hof, P.R. & Morgane, P.J. (1992). Calretinin-immunoreactive neurons in the primary visual cortex of dolphin and human brains. Brain Research 595, 181188.CrossRefGoogle ScholarPubMed
Gray-Keller, M.P., Polans, A.S., Palczewski, K. & Detwiler, P.B. (1993). The effect of recoverin-like calcium binding proteins on the photoresponse of retinal rods. Neuron 10, 523531.CrossRefGoogle ScholarPubMed
Haley, T.L., Pochet, R., Baizer, L., Burton, M.D., Crabb, J.W., Parmentier, M. & Polans, A.S. (1995). Calbindin D-28K immunoreactivity of human cone cells varies with retinal position. Visual Neuroscience 12, 301307.CrossRefGoogle ScholarPubMed
Hamano, K., Kiyama, H., Emson, P.C., Manabe, R., Nakauchi, M. & Tohyama, M. (1990). Localization of two calcium-binding proteins, calbindin (28kD) and parvalbumin (12kD), in the vertebrate retina. Journal of Comparative Neurology 302, 417424.CrossRefGoogle Scholar
Hendry, S.H.C., Jones, E.G., Emson, P.C., Lowson, D.E.M., Heizmann, C.W. & Streit, P. (1989). Two classes of cortical GABA neurons defined by differential calcium-binding protein reactivities. Experimental Brain Research 76, 467472.CrossRefGoogle Scholar
Ishimoto, I., Kiyama, H., Hamano, K., Shiosaka, S., Malbon, C.C., Nakauchi, M., Emson, P.C., Manabe, R. & Tohyama, M. (1989). Co-localization of adrenergic receptors and vitamin-D-dependent calcium-binding protein (calbindin) in the dopaminergic amacrine cells of the rat retina. Neuroscience Research 7, 257263.CrossRefGoogle ScholarPubMed
Kawaguchi, Y., Katsumaru, H., Kosaka, T., Heizmann, C.W. & Hama, K. (1987). Fast spiking cells in rat hippocampus (CA1 region) contain the calcium binding protein parvalbumin. Brain Research 416, 369374.CrossRefGoogle ScholarPubMed
Kocsis, J.D., Rand, M.N., Chen, B., Waxman, S.G. & Pourcho, R. (1993). Kainate elicits elevated nuclear calcium signals in retinal neurons via calcium-induced calcium release. Brain Research 616, 273282.CrossRefGoogle ScholarPubMed
Kosaka, T., Heizmann, C.W., Tateishi, K., Kamaoka, Y. & Hama, K. (1987). An aspect of the organizational principle of gamma-aminobutyric acid-ergic system in the cerebral cortex. Brain Research 409, 403408.CrossRefGoogle Scholar
Li, Z., Decavel, C. & Hatton, G.I. (1995). Calbindin-D28k: Role in determining intrinsically generated firing patterns in rat supraoptic neurones. Journal of Physiology 488, 601608.CrossRefGoogle ScholarPubMed
Lledo, P-M., Hjelmstad, G.O., Mukherji, S., Soderling, T.R., Malenka, R.C. & Nicoll, R.A. (1995). Calcium/calmodulin-dependent protein kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proceedings of the National Academy of Sciences of the U.S.A. 92, 1117511179.CrossRefGoogle ScholarPubMed
Milam, A.H., Dacey, D.M. & Dizhoor, A.M. (1993). Recoverin immunoreactivity in mammalian cone bipolar cells. Visual Neuroscience 10, 112.CrossRefGoogle ScholarPubMed
Noronha, K.F. & Mercier, A.J. (1995). A role for calcium/calmodulin-dependent protein kinase in mediating synaptic modulation by a neuropeptide. Brain Research 673, 7074.CrossRefGoogle ScholarPubMed
Palczewski, K. (1994). Is vertebrate phototransduction solved? New insights into the molecular mechanism of phototransduction. Investigative Ophthalmology and Visual Science 35, 35773581.Google ScholarPubMed
Pasteels, B., Parmentier, M., Lawson, E.M., Verstappen, A. & Pochet, R. (1987). Calcium-binding protein immunoreactivity in pigeon retina. Investigative Ophthalmology and Visual Science 28, 658664.Google ScholarPubMed
Pasteels, B., Rogers, J., Blachier, F. & Pochet, R. (1990). Calbindin and calretinin localizations in retina from different species. Visual Neuroscience 5, 116.CrossRefGoogle ScholarPubMed
Pourcho, R.G. (1980). Uptake of (3H)glycine and (3H)GABA by amacrine cells in the cat retina. Brain Research 198, 333346.CrossRefGoogle ScholarPubMed
Pourcho, R.G. & Goebel, D.J. (1985). A combined Golgi and autoradiographic study of (3H)glycine-accumulating amacrine cells in the cat retina. Journal of Comparative Neurology 233, 473480.CrossRefGoogle ScholarPubMed
Pourcho, R.G. & Goebel, D.J. (1987 a). A combined Golgi and autoradiographic study of (3H)glycine-accumulating cone bipolar cells in the cat retina. Journal of Neuroscience 7, 11781188.CrossRefGoogle ScholarPubMed
Pourcho, R.G. & Goebel, D.J. (1987 b). Visualization of endogenous glycine in cat retina: An immunocytochemical study with Fab fragments. Journal of Neuroscience 7, 11891197.CrossRefGoogle ScholarPubMed
Pourcho, R.G. & Owczarzak, M.T. (1989). Distribution of GABA immunoreactivity in the cat retina: A light- and electron-microsopic study. Visual Neuroscience 2, 425435.CrossRefGoogle Scholar
Röhrenbeck, J., Wässle, H. & Boycott, B.B. (1989). Horizontal cells in the monkey retina: Immunocytochemical staining with antibodies against calcium binding proteins. European Journal of Neuroscience 1, 407420.CrossRefGoogle ScholarPubMed
Röhrenbeck, J., Wässle, H. & Heizmann, C.W. (1987). Immunocytochemical labeling of horizontal cells in mammalian retina using antibodies against calcium-binding proteins. Neuroscience Letters 77, 255260.CrossRefGoogle ScholarPubMed
Sanna, P.P., Keyser, K.T., Celio, M.R., Karten, H.J. & Bloom, F.E. (1993). Distribution of parvalbumin immunoreactivity in the vertebrate retina. Brain Research 600, 141150.CrossRefGoogle ScholarPubMed
Szél, A., Röhlich, P. & Govardovski, V. (1986). Immunocytochemical discrimination of visual pigments in the retinal photoreceptors of the nocturnal gecho teratoscincus scincus. Experimental Eye Research 43, 895904.CrossRefGoogle Scholar
Wässle, H., Grünert, U. & Röhrenbeck, J. (1993). Immunocytochemical staining of AII-amacrine cells in the rat retina with antibodies against parvalbumin. Journal of Comparative Neurology 332, 407420.CrossRefGoogle ScholarPubMed