Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-26T10:55:57.961Z Has data issue: false hasContentIssue false

Are there ionotropic glutamate receptors on the rod bipolar cell of the mouse retina?

Published online by Cambridge University Press:  02 June 2009

Thomas E. Hughes
Affiliation:
Department of Ophthalmology and Visual Science and Section of Neurobiology, Yale University School of Medicine, New Haven

Abstract

There is some evidence that the mammalian rod bipolar cell expresses ionotropic glutamate receptors. This is surprising in light of the strong evidence that the glutamate released by the rod photoreceptor acts upon a metabotropic glutamate receptor-mGluRo-present in the dendrites of the rod bipolar cell. To reexamine the issue of which glutamate receptor subunits may be present on the rod bipolar cell, an immunohistochemical study of acutely dissociated retinal cells was undertaken. Two monoclonal antibodies provided some evidence that GluR2 and/or GluR4, as well as NMDAR1 subunit, are present on the rod bipolar cell. A monoclonal antibody directed against the N-terminus of GluR2 labeled the rod bipolar cells, but two antisera directed against the C-terminus of the same subunit did not. One possible explanation for this discrepancy could be that the rare splice variant GluR2-long, which is endowed with a different C-terminus, could be expressed by the rod bipolar cell. To explore this possibility, RT-PCR was used to amplify the transcripts encoding GluR2 in the neural retina. This revealed that GluR2-long transcripts, with the flop exon, are present.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brose, N., Gasic, O.P., Vetter, D.E., Sullivan, J.M. & Heinemann, S.F. (1993). Protein chemical characterization and immunocytochemical localization of the NMDA receptor subunit NMDA R1. Journal of Biological Chemistry 268, 2266322671.CrossRefGoogle ScholarPubMed
De La Villa, P., Kurahashi, T. & Kaneko, A. (1995). L-glutamate-induced responses and cGMP-activated channels in three subtypes of retinal bipolar cells dissociated from the cat. Journal of Neuroscience 15, 35713582.CrossRefGoogle ScholarPubMed
Euler, T., Schneider, H. & Wässle, H. (1996). Glutamate responses of bipolar cells in a slice preparation of the rat retina. Journal of Neuroscience 16, 29342944.CrossRefGoogle Scholar
Greferath, U., Grünert, U. & Wässle, H. (1990). Rod bipolar cells in the mammalian retina show protein kinase C-like immunoreactivity. Journal of Comparative Neurology 301, 433442.CrossRefGoogle ScholarPubMed
Hartveit, E. (1995). Effects of ionotropic glutamate receptor agonists on rat retinal bipolar cells. Society for Neuroscience Abstracts 21, 901.Google Scholar
Hartveit, E., Brandstätter, J.H., Sassoè-Pognetto, M., Laurie, D.J., Seeburg, P.H. & Wässle, H. (1994). Localization and developmental expression of the NMDA receptor subunit NR2A in the mammalian retina. Journal of Comparative Neurology 348, 570582.CrossRefGoogle ScholarPubMed
Huba, R. & Hofmann, H.-D. (1988). Tetanus toxin binding to isolated and cultured rat retinal glial cells. Olia 1, 156164.Google ScholarPubMed
Hughes, I.E., Grünert, U. & Karten, H.J. (1991). GABAA receptors in the retina of the cat: An immunohistochemical study of wholemounts, sections and dissociated cells. Visual Neuroscience 6, 229238.CrossRefGoogle Scholar
Hughes, T.E., Hermans-Borgmeyer, I. & Heinemann, S. (1992). Differential expression of glutamate receptor genes (GluR1–5) in the rat retina. Visual Neuroscience 8, 4955.CrossRefGoogle ScholarPubMed
Karschin, A. & Wässle, H. (1990). Voltage- and transmitter-gated currents in isolated rod bipolar cells of rat retina. Journal of Neurophysiology 63, 860876.CrossRefGoogle ScholarPubMed
Kohler, M., Kornau, H.C. & Seeburg, P.H. (1994). The organization of the gene for the functionally dominant alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor subunit GluR-B. Journal of Biological Chemistry 269, 1736717370.CrossRefGoogle ScholarPubMed
Masu, M., Iwakabe, H., Tagawa, Y., Miyoshi, T., Yamashita, M., Fukuda, Y., Sasaki, H., Hiroi, K., Nakamura, Y., Shigemoto, R. & et al. (1995). Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell 80, 757765.CrossRefGoogle ScholarPubMed
Müller, F., Greferath, U., Wässle, H., Wisden, W. & Seeburg, P. (1992). Glutamate receptor expression in the rat retina. Neuroscience Letters 138, 179182.CrossRefGoogle ScholarPubMed
Nakajima, Y., Iwakabe, H., Akazawa, C., Nawa, H., Shigemoto, R., Mizuno, N. & Nakanishi, S. (1993). Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. Journal of Biological Chemistry 268, 1186811873.CrossRefGoogle ScholarPubMed
Nawy, S. & Jahr, C.E. (1990). Suppression by glutamate of cGMP-activated conductance in retinal bipolar cells. Nature 346, 269271.CrossRefGoogle ScholarPubMed
Nawy, S. & Jahr, C.E. (1991). cGMP-gated conductance in retinal bipolar cells is suppressed by the photoreceptor transmitter. Neuron 7, 677683.CrossRefGoogle ScholarPubMed
Nomura, A., Shigemoto, R., Nakamura, Y., Okamoto, N., Mizuno, N. & Nakanishi, S. (1994). Developmentally regulated postsynaptic localization of a metabotropic glutamate receptor in rat rod bipolar cells. Cell 77, 361369.CrossRefGoogle ScholarPubMed
Peng, Y.W., Blackstone, C.D., Huganir, R.L. & Yau, K.W. (1995). Distribution of glutamate receptor subtypes in the vertebrate retina. Neuroscience 66, 483497.CrossRefGoogle ScholarPubMed
Puchalski, R.B., Louis, J.C., Brose, N., Traynelis, S.F., Egebjerg, J., Kukekov, V., Wenthold, R.J., Rogers, S.W., Lin, F., Moran, T., Morrison, J.H. & Heinemann, S.F. (1994). Selective RNA editing and subunit assembly of native glutamate receptors. Neuron 13, 131147.CrossRefGoogle ScholarPubMed
Qin, P. & Pourcho, R.G. (1996). Distribution of AMPA-selective glutamate receptor subunits in the cat retina. Brain Research 710, 303307.CrossRefGoogle ScholarPubMed
Sarthy, P.V. & Lam, D.M.-K. (1979). Isolated cells from a mammalian retina. Brain Research 176, 208212.CrossRefGoogle ScholarPubMed
Shiells, R.A. & Falk, G. (1990). Glutamate receptors of rod bipolar cells are linked to a cyclic GMP cascade via a G-protein. Proceedings of the Royal Society B (London) 242, 9194.Google ScholarPubMed
Wässle, H., Yamashita, M., Greferath, U., Grünert, U. & Müller, F. (1991). The rod bipolar cell of the mammalian retina. Visual Neuroscience 7, 99112.CrossRefGoogle ScholarPubMed
Watanabe, M., Mishina, M. & Inoue, Y. (1994). Differential distributions of the NMDA receptor channel subunit mRNAs in the mouse retina. Brain Research 634, 328332.CrossRefGoogle ScholarPubMed
Wenthold, R.J., Yokotani, N., Doi, K. & Wada, K. (1992). Immunochemical characterization of the non-NMDA glutamate receptor using subunit-specific antibodies. Evidence for a hetero-oligomeric structure in rat brain. Journal of Biological Chemistry 267, 501507.CrossRefGoogle ScholarPubMed
Yamashita, M. & Wässle, H. (1991). Responses of rod bipolar cells isolated from the rat retina to the glutamate agonist 2-amino-4-phosphonobutyric acid (APB). Journal of Neuroscience 11, 23722382.CrossRefGoogle Scholar