Skip to main content Accessibility help
×
Home
Hostname: page-component-78bd46657c-lkdxh Total loading time: 0.186 Render date: 2021-05-06T21:50:56.753Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Soluble guanylate cyclase and nitric oxide synthase in synaptosomal fractions of bovine retina

Published online by Cambridge University Press:  01 May 1998

ALEXANDER MARGULIS
Affiliation:
Eye Research Institute, Oakland University, Rochester
NIKOLAY POZDNYAKOV
Affiliation:
Eye Research Institute, Oakland University, Rochester
LOAN DANG
Affiliation:
Eye Research Institute, Oakland University, Rochester
ARI SITARAMAYYA
Affiliation:
Eye Research Institute, Oakland University, Rochester

Abstract

Cyclic GMP has been shown in recent years to directly activate ion channels in bipolar and ganglion cells, and to indirectly regulate coupling between horizontal cells, and between bipolar and amacrine cells. In all of these cases, the effects of cyclic GMP are mimicked by nitric oxide. An increase in calcium concentration stimulates the production of nitric oxide by neuronal and endothelial forms of nitric oxide synthase, which in turn activates soluble guanylate cyclases, enhancing the synthesis of cyclic GMP. Though some effects of nitric oxide do not involve cyclic GMP, the nitric oxide-cyclic GMP cascade is well recognized as a signaling mechanism in brain and other tissues. The widespread occurrence of nitric oxide/cyclic GMP-regulated ion channel activity in retinal neurons raises the possibility that nitric-oxide-sensitive soluble guanylate cyclases play an important role in cell–cell communication, and possibly, synaptic transmission. Immunohistochemical studies have indicated the presence of soluble guanylate cyclase in retinal synaptic layers, but such studies are not suitable for determination of the density or quantitative subcellular distribution of the enzyme. Microanalytical methods involving microdissection of frozen retina also showed the presence of cyclase activity in retinal plexiform layers but these methods did not permit distinction between nitric oxide-sensitive and insensitive cyclases. In this study, we fractionated retinal homogenate into the cytosolic and synaptosomal fractions and investigated the specific activity and distribution of soluble guanylate cyclase and nitric oxide synthase. The results show that both enzymes are present in the synaptosomal fractions derived from inner and outer plexiform layers. The synaptosomal fraction derived from inner retina was highly enriched in cyclase activity. Nitric oxide synthase activity was also higher in the inner than outer retinal synaptosomal fraction. The results suggest that the nitric oxide-cyclic GMP system is operational in both synaptic layers of retina and that it may play a more significant role in the inner retina.

Type
Research Article
Copyright
1998 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Soluble guanylate cyclase and nitric oxide synthase in synaptosomal fractions of bovine retina
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Soluble guanylate cyclase and nitric oxide synthase in synaptosomal fractions of bovine retina
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Soluble guanylate cyclase and nitric oxide synthase in synaptosomal fractions of bovine retina
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *