Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-2sbtp Total loading time: 0.237 Render date: 2021-07-25T22:02:15.386Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Poststimulus response characteristics of the human cone flicker electroretinogram

Published online by Cambridge University Press:  10 September 2013

SOWJANYA GOWRISANKARAN
Affiliation:
Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
J. JASON McANANY
Affiliation:
Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois Department of Psychology, University of Illinois at Chicago, Chicago, Illinois
KENNETH R. ALEXANDER
Affiliation:
Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois Department of Psychology, University of Illinois at Chicago, Chicago, Illinois
Corresponding
E-mail address:

Abstract

At certain temporal frequencies, the human cone flicker electroretinogram (ERG) contains multiple additional responses following the termination of a flicker train. The purpose of this study was to determine whether these poststimulus responses are a continuing response to the terminated flicker train or represent the oscillation of a resonant system. ERGs were recorded from 10 visually normal adults in response to full-field sinusoidally modulated flicker trains presented against a short-wavelength rod-saturating adapting field. The amplitude and timing properties of the poststimulus responses were evaluated within the context of a model of a second-order resonant system. At stimulus frequencies between 41.7 and 71.4 Hz, the majority of subjects showed at least three additional ERG responses following the termination of the flicker train. The interval between the poststimulus responses was approximately constant across stimulus frequency, with a mean of 14.4 ms, corresponding to a frequency of 69.4 Hz. The amplitude and timing characteristics of the poststimulus ERG responses were well described by an underdamped second-order system with a resonance frequency of 70.3 Hz. The observed poststimulus ERG responses may represent resonant oscillations of retinal ON bipolar cells, as has been proposed for electrophysiological recordings of poststimulus responses from retinal ganglion cells. However, further investigation is required to determine the types of retinal neurons involved in the generation of the poststimulus responses of the human flicker ERG.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below.

References

Burrone, J. & Lagnado, L. (1997). Electrical resonance and Ca2+ influx in the synaptic terminal of depolarizing bipolar cells from the goldfish retina. The Journal of Physiology 505, 571584.CrossRefGoogle ScholarPubMed
Gao, J., Schwartz, G., Berry, M.J. II. & Holmes, P. (2009). An oscillatory circuit underlying the detection of disruptions in temporally-periodic patterns. Network 20, 106135.CrossRefGoogle ScholarPubMed
Marmor, M.F., Fulton, A.B., Holder, G.E., Miyake, Y., Brigell, M. & Bach, M. (2009). ISCEV standard for full-field clinical electroretinography (2008 update). Documenta Ophthalmologica. Advances in Ophthalmology 118, 6977.CrossRefGoogle Scholar
McAnany, J.J. & Alexander, K.R. (2009). Is there an omitted stimulus response in the human cone flicker electroretinogram? Visual Neuroscience 26, 189194.CrossRefGoogle ScholarPubMed
McAnany, J.J., Alexander, K.R., Kumar, N.M., Ying, H., Anastasakis, A. & Fishman, G.A. (2013). Electroretinographic findings in a patient with congenital stationary night blindness due to a novel NYX mutation. Ophthalmic Genetics 34, 167173.CrossRefGoogle Scholar
Schwartz, G. & Berry, M.J. II. (2008). Sophisticated temporal pattern recognition in retinal ganglion cells. Journal of Neurophysiology 99, 17871798.CrossRefGoogle ScholarPubMed
Schwartz, G., Harris, R., Shrom, D. & Berry, M.J. II. (2007). Detection and prediction of periodic patterns by the retina. Nature Neuroscience 10, 552554.CrossRefGoogle ScholarPubMed

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Poststimulus response characteristics of the human cone flicker electroretinogram
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Poststimulus response characteristics of the human cone flicker electroretinogram
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Poststimulus response characteristics of the human cone flicker electroretinogram
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *