Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-15T16:05:34.371Z Has data issue: false hasContentIssue false

Development of cortical responses to optic flow

Published online by Cambridge University Press:  20 December 2007

RICK O. GILMORE
Affiliation:
The Pennsylvania State University, University Park, Pennsylvania
C. HOU
Affiliation:
The Smith-Kettlewell Eye Research Institute, San Francisco, California
M.W. PETTET
Affiliation:
The Smith-Kettlewell Eye Research Institute, San Francisco, California
A.M. NORCIA
Affiliation:
The Smith-Kettlewell Eye Research Institute, San Francisco, California

Abstract

Humans discriminate approaching objects from receding ones shortly after birth, and optic flow associated with self-motion may activate distinctive brain networks, including the human MT+ complex. We sought evidence for evoked brain activity that distinguished radial motion from other optic flow patterns, such as translation or rotation by recording steady-state visual evoked potentials (ssVEPs), in both adults and 4–6 month-old infants to direction-reversing optic flow patterns. In adults, radial flow evoked distinctive brain responses in both the time and frequency domains. Differences between expansion/contraction and both translation and rotation were especially strong in lateral channels (PO7 and PO8), and there was an asymmetry between responses to expansion and contraction. In contrast, infants' evoked response waveforms to all flow types were equivalent, and showed no evidence of the expansion/contraction asymmetry. Infants' responses were largest and most reliable for the translation patterns in which all dots moved in the same direction. This pattern of response is consistent with an account in which motion processing systems detecting locally uniform motion develop earlier than do systems specializing in complex, globally non-uniform patterns of motion, and with evidence suggesting that motion processing undergoes prolonged postnatal development.

Type
Research Article
Copyright
2007 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahlfors, S.P., Simpson, G.V., Dale, A.M., Belliveau, J.W., Liu, A.K., Korvenoja, A., Virtanen, J., Huotilainen, M., Tootell, R.B.H., Aronen, H.J. & Ilmoniemi, R.J. (1999). Spatiotemporal activity of a cortical network for processing visual motion revealed by MEG and fMRI. Journal of Neurophysiology 82, 25452555.CrossRefGoogle Scholar
Andersen, G.J. & Dyre, B.P. (1989). Spatial orientation from optic flow in the central visual-field. Perception & Psychophysics 45, 453458.CrossRefGoogle Scholar
Andersen, R.A., Bradley, D.C. & Shenoy, K.V. (1996). Neural mechanisms for heading and structure-from-motion perception. Cold Spring Harbor Symposia on Quantitative Biology 61, 1525.Google Scholar
Atchley, P. & Andersen, G.J. (1998). The effect of age, retinal eccentricity, and speed on the detection of optic flow components. Psychology and Aging 13, 297308.CrossRefGoogle Scholar
Atkinson, J. (1984). Human visual development over the first six months of life: A review and a hypothesis. Human Neurobiology 3, 6174.Google Scholar
Atkinson, J. (2000). The Developing Visual Brain. Oxford: Oxford University Press.
Ball, W.A. & Tronick, E. (1971). Infant responses to impending collision: Optical and real. Science 171, 818820.CrossRefGoogle Scholar
Banton, T., Dobkins, K. & Bertenthal, B.I. (2001). Infant direction discrimination thresholds. Vision Research 41, 10491056.CrossRefGoogle Scholar
Baumberger, B. & Fluckiger, M. (2004). The development of distance estimation in optic flow. Perception 33, 10811099.CrossRefGoogle Scholar
Beer, J., Blakemore, C., Previc, F.H. & Liotti, M. (2002). Areas of the human brain activated by ambient visual motion, indicating three kinds of self-movement. Experimental Brain Research 143, 7888.CrossRefGoogle Scholar
Benson, P.J., Guo, K. & Blakemore, C. (1998). Direction discrimination of moving gratings and plaids and coherence in dot displays without primary visual cortex (V1). European Journal of Neuroscience 10, 37673772.CrossRefGoogle Scholar
Bex, P.J., Metha, A.B. & Makous, W. (1998). Psychophysical evidence for a functional hierarchy of motion processing mechanisms. Journal of the Optical Socociety of America A: Optics, Image Science, Vision 15, 769776.CrossRefGoogle Scholar
Bex, P.J., Metha, A.B. & Makous, W. (1999). Enhanced motion aftereffect for complex motions. Vision Research 39, 22292238.CrossRefGoogle Scholar
Blair, R.C. & Karniski, W. (1993). An alternative method for significance testing of waveform difference potentials. Psychophysiology 30, 518524.CrossRefGoogle Scholar
Bourne, J.A. & Rosa, M.G. (2006). Hierarchical development of the primate visual cortex, as revealed by neurofilament immunoreactivity: Early maturation of the middle temporal area (MT). Cerebral Cortex 16, 405414.CrossRefGoogle Scholar
Bower, T.G.R., Broughton, J.M. & Moore, M.K. (1970). Infant responses to approaching objects: An indicator of response to distal variables. Perception & Psychophysics 9, 193196.Google Scholar
Braddick, O., Atkinson, J. & Wattam-Bell, J. (2003). Normal and anomalous development of visual motion processing: Motion coherence and “dorsal-stream vulnerability”. Neuropsychologia 41, 17691784.CrossRefGoogle Scholar
Braddick, O.J., O'Brien, J.M., Wattam-Bell, J., Atkinson, J., Hartley, T. & Turner, R. (2001). Brain areas sensitive to coherent visual motion. Perception 30, 6172.CrossRefGoogle Scholar
Braddick, O., Birtles, D., Warshavsky, J., Akthar, F., Wattam-Bell, J. & Atkinson, J. (2006). Evoked potentials specific to global visual coherence in adults and infants. Perception 35, 4.Google Scholar
Braddick, O., Birtles, D., Wattam-Bell, J. & Atkinson, J. (2005). Motion- and orientation-specific cortical responses in infancy. Vision Research 45, 31693179.CrossRefGoogle Scholar
Bradley, D.C., Maxwell, M., Andersen, R.A., Banks, M.S. & Shenoy, K.V. (1996). Mechanisms of heading perception in primate visual cortex. Science 273, 15441547.CrossRefGoogle Scholar
Bronson, G.W. (1974). The postnatal growth of visual capacity. Child Development 45, 873890.CrossRefGoogle Scholar
Bronson, G.W. (1982). Structure, status and characteristics of the nervous system at birth. In Psychobiology of the human newborn, ed. Stratton, P., pp. 99118. Chichester: Wiley & Sons.
Burr, D.C., Badcock, D.R. & Ross, J. (2001). Cardinal axes for radial and circular motion, revealed by summation and by masking. Vision Research 41, 473481.CrossRefGoogle Scholar
Burr, D.C., Morrone, M.C. & Vaina, L.M. (1998). Large receptive fields for optic flow detection in humans. Vision Research 38, 17311743.CrossRefGoogle Scholar
Burr, D.C. & Santoro, L. (2001a). Temporal integration of optic flow, measured by contrast and coherence thresholds. Vision Research 41, 18911899.Google Scholar
Burr, D.C. & Santoro, L. (2001b). Temporal integration of optic flow, measured by contrast and coherence thresholds. Vision Research 41, 18911899.Google Scholar
Conde, F., Lund, J.S. & Lewis, D.A. (1996). The hierarchical development of monkey visual cortical regions as revealed by the maturation of parvalbumin-immunoreactive neurons. Brain Research/Developmental Brain Research 96, 261276.CrossRefGoogle Scholar
Cornette, L., Dupont, P., Spileers, W., Sunaert, S., Michiels, J., Van Hecke, P., Mortelmans, L. & Orban, G.A. (1998). Human cerebral activity evoked by motion reversal and motion onset. A PET study. Brain 121, 143157.CrossRefGoogle Scholar
Crowell, J.A. & Banks, M.S. (1993). Perceiving heading with different retinal regions and types of optic flow. Perception & Psychophysics 53, 325337.CrossRefGoogle Scholar
Crowell, J.A. & Banks, M.S. (1996). Ideal observer for heading judgments. Vision Research 36, 471490.CrossRefGoogle Scholar
de Jong, B.M., Shipp, S., Skidmore, B., Frackowiak, R.S.J. & Zeki, S. (1994). The cerebral activity related to the visual perception of forward motion in depth. Brain 117, 10391054.CrossRefGoogle Scholar
Deutschlander, A., Bense, S., Stephan, T., Schwaiger, M., Dieterich, M. & Brandt, T. (2004). Rollvection versus linearvection: Comparison of brain activations in PET. Human Brain Mapping 21, 143153.CrossRefGoogle Scholar
Distler, C., Bachevalier, J., Kennedy, C., Mishkin, M. & Ungerleider, L.G. (1996). Functional development of the corticocortical pathway for motion analysis in the macaque monkey: A 14C-2-deoxyglucose study. Cerebral Cortex 6, 164195.CrossRefGoogle Scholar
Duffy, C.J. & Wurtz, R.H. (1991a). Sensitivity of MST Neurons to optic flow stimuli.2. Mechanisms of response selectivity revealed by small-field stimuli. Journal of Neurophysiology 65, 13461359.Google Scholar
Duffy, C.J. & Wurtz, R.H. (1991b). Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large field stimuli. Journal of Neurophysiology 65, 13291345.Google Scholar
Duffy, C.J. & Wurtz, R.H. (1995). Response of monkey MST neurons to optic flow stimuli with shifted centers of motion. Journal of Neuroscience 15, 51925208.CrossRefGoogle Scholar
Duffy, C.J. & Wurtz, R.H. (1997a). Planar directional contributions to optic flow responses in MST neurons. Journal of Neurophysiology 77, 782796.Google Scholar
Duffy, C.J. & Wurtz, R.H. (1997b). Medial superior temporal area neurons respond to speed patterns in optic flow. Journal of Neuroscience 17, 28392851.Google Scholar
Duffy, C.J. (1998). MST neurons respond to optic flow and translational movement. Journal of Neurophysiology 80, 18161827.CrossRefGoogle Scholar
Dukelow, S.P., DeSouza, J.F., Culham, J.C., van den Berg, A.V., Menon, R.S. & Vilis, T. (2001). Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. Journal of Neurophysiology 86, 19912000.CrossRefGoogle Scholar
Edwards, M. & Badcock, D.R. (1993). Asymmetries in the sensitivity to motion in depth: A centripetal bias. Perception 22, 10131023.CrossRefGoogle Scholar
Ellemberg, D., Lewis, T.L., Dirks, M., Maurer, D., Ledgeway, T., Guillemot, J.P. & Lepore, F. (2004). Putting order into the development of sensitivity to global motion. Vision Research 44, 24032411.CrossRefGoogle Scholar
Ellemberg, D., Lewis, T.L., Liu, C.H. & Maurer, D. (1999). Development of spatial and temporal vision during childhood. Vision Research 39, 23252333.CrossRefGoogle Scholar
Ellemberg, D., Lewis, T.L., Meghji, K.S., Maurer, D., Guillemot, J.P. & Lepore, F. (2003). Comparison of sensitivity to first- and second-order local motion in 5-year-olds and adults. Spatial Vision 16, 419428.CrossRefGoogle Scholar
Flechsig, P. (1901). Developmental (myelongenetic) localisation of the cerebral cortex in the human subject. Lancet 2, 10271029.CrossRefGoogle Scholar
Frenz, H. & Lappe, M. (2005). Absolute travel distance from optic flow. Vision Research 45, 16791692.CrossRefGoogle Scholar
Geesaman, B.J. & Qian, N. (1998). The effect of complex motion pattern on speed perception. Vision Research 38, 12231231.CrossRefGoogle Scholar
Gibson, J.J. (1966). The Senses Considered as Perceptual Systems. Boston: Houghton-Mifflin.
Gibson, J.J. (1979). The Ecological Approach to Visual Perception. Boston: Houghton Mifflin.
Gilmore, R.O. & Johnson, M.H. (1997a). Body-centered representations for visually-guided action emerge during early infancy. Cognition 65, B1B9.Google Scholar
Gilmore, R.O. & Johnson, M.H. (1997b). Egocentric action in early infancy: Spatial frames of reference for saccades. Psychological Science 8, 224230.Google Scholar
Gilmore, R.O., Baker, T.J. & Grobman, K.H. (2004). Stability in young infants' discrimination of optic flow. Developmental Psychology 40, 259270.CrossRefGoogle Scholar
Gilmore, R.O. & Rettke, H.J. (2003). Four-month-olds' discrimination of optic flow patterns depicting different directions of observer motion. Infancy 4, 177200.CrossRefGoogle Scholar
Giolli, R.A., Blanks, R.H. & Lui, F. (2005). The accessory optic system: Basic organization with an update on connectivity, neurochemistry, and function. Progress in Brain Research 151, 407440.Google Scholar
Goossens, J., Dukelow, S.P., Menon, R.S., Vilis, T. & van den Berg, A.V. (2006). Representation of head-centric flow in the human motion complex. Journal of Neuroscience 26, 56165627.CrossRefGoogle Scholar
Graziano, M.S.A., Andersen, R.A. & Snowden, R.J. (1994). Tuning of MST neurons to spiral motions. Journal of Neuroscience 14, 14161419.CrossRefGoogle Scholar
Habak, C., Casanova, C. & Faubert, J.N. (2002). Central and peripheral interactions in the perception of optic flow. Vision Research 42, 28432852.CrossRefGoogle Scholar
Hanada, M. & Ejima, Y. (2000). A model of heading judgment in forward motion. Vision Research 40, 243263.CrossRefGoogle Scholar
Heuer, H.W. & Britten, K.H. (2004). Optic flow signals in extrastriate area MST: Comparison of perceptual and neuronal sensitivity. Journal of Neurophysiology 91, 13141326.CrossRefGoogle Scholar
Holliday, I.E. & Meese, T.S. (2005). Neuromagnetic responses to complex motion are greatest for expansion. International Journal of Psychopathology 55, 145157.CrossRefGoogle Scholar
Hou, C., Gilmore, R.O., Pettet, M.W. & Norcia, A.M. (2006). Development of spatial and temporal dynamics of motion coherence in human visual system. Paper presented at the Association for Research in Vision and Ophthalmology, Ft. Lauderdale, FL.
Huk, A.C., Dougherty, R.F. & Heeger, D.J. (2002). Retinotopy and Functional Subdivision of Human Areas MT and MST. Journal of Neuroscience 22, 71957205.CrossRefGoogle Scholar
Johnson, M.H. (1990). Cortical maturation and the development of visual attention in early infancy. Journal of Cognitive Neuroscience 2, 8195.CrossRefGoogle Scholar
Jouen, F., Lepecq, J.-C., Gapenne, O. & Bertenthal, B.I. (2000). Optic flow sensitivity in neonates. Infant Behavior and Development 23, 271284.CrossRefGoogle Scholar
Kiorpes, L. & Movshon, J.A. (2004). Development of sensitivity to visual motion in macaque monkeys. Visual Neuroscience 21, 851859.CrossRefGoogle Scholar
Koenderink, J.J. (1986). Optic flow. Vision Research 26, 161180.CrossRefGoogle Scholar
Kourtzi, Z., Augath, M., Logothetis, N.K., Movshon, J.A. & Kiorpes, L. (2006). Development of visually evoked cortical activity in infant macaque monkeys studied longitudinally with fMRI. Magnetic Resonance Imaging 24, 359366.CrossRefGoogle Scholar
Kourtzi, Z., Bulthoff, H.H., Erb, M. & Grodd, W. (2001). Object-selective responses in the human motion area MT/MST. Nature Neuroscience 5, 1718.Google Scholar
Koyama, S., Sasaki, Y., Andersen, G.J., Tootell, R.B., Matsuura, M. & Watanabe, T. (2005). Separate processing of different global-motion structures in visual cortex is revealed by FMRI. Current Biology 15, 20272032.CrossRefGoogle Scholar
Lagae, L., Maes, H., Raiguel, S., Xiao, D.-K. & Orban, G.A. (1994). Responses of macaque STS neurons to optic flow components: A comparison of areas MT and MST. Journal of Neurophysiology 5, 15971626.CrossRefGoogle Scholar
Lappe, M. & Rauschecker, J.P. (1994). Heading detection from optic flow. Nature 369, 712713.CrossRefGoogle Scholar
Meese, T.S. & Anderson, S.J. (2002). Spiral mechanisms are required to account for summation of complex motion components. Vision Research 42, 10731080.CrossRefGoogle Scholar
Meese, T.S. & Harris, M.G. (2001). Independent detectors for expansion and rotation, and for orthogonal components of deformation. Perception 30, 11891202.CrossRefGoogle Scholar
Morrone, M.C., Burr, D.C., Di Pietro, S. & Stefanelli, M.-A. (1999). Cardinal directions for visual optic flow. Current Biology 9, 763766.CrossRefGoogle Scholar
Morrone, M.C., Burr, D.C. & Vaina, L.M. (1995). Two stages of visual processing for radial and circular motion. Nature 376(6540), 507509.CrossRefGoogle Scholar
Morrone, M.C., Tosetti, M., Montanaro, D., Fiorentini, A., Cioni, G. & Burr, D.C. (2000). A cortical area that responds specifically to optic flow, revealed by fMRI. Nature Neuroscience 3, 13221328.CrossRefGoogle Scholar
Movshon, J.A., Rust, N.C., Kohn, A., Kiorpes, L. & Hawken, M.J. (2003). Receptive field properties of MT neurons in infant macaques. Society for Neuroscience Abstracts 126, 8.Google Scholar
Nañez, J. & Yonas, A. (1994). Effects of luminance and texture motion on infant defensive reactions to optical collision. Infant Behavior and Development 17, 165174.CrossRefGoogle Scholar
Nichols, T.E. & Holmes, A.P. (2001). Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human Brain Mapping 15, 125.Google Scholar
Orban, B.A., Lagae, L., Raiguel, S. & Xiao, D. (1995). The speed tuning of medial superior temporal (MST) cell responses to optic-flow components. Perception 24, 259285.CrossRefGoogle Scholar
Paradis, A.L., Cornilleau-Peres, V., Droulez, J., Van de Moortele, P.F., Lobel, E., Berthoz, A., Le Bihan, D. & Poline, J.B. (2000). Visual perception of motion and 3-D structure from motion: An fMRI study. Cerebral Cortex 10, 772783.CrossRefGoogle Scholar
Peuskens, H., Sunaert, S., Dupont, P., Van Hecke, P. & Orban, G.A. (2001). Human brain regions involved in heading estimation. The Journal of Neuroscience 21, 24512461.CrossRefGoogle Scholar
Ptito, M., Kupers, R., Faubert, J. & Gjedde, A. (2001). Cortical representation of inward and outward radial motion in man. NeuroImage 14, 14091415.CrossRefGoogle Scholar
Reinhardt-Rutland, A.H. (1994). Perception of motion in depth from luminous rotating spirals: Directional asymmetries during and after rotation. Perception 23, 763769.CrossRefGoogle Scholar
Rodman, H.R., Scalaidhe, S.P. & Gross, C.G. (1993). Response properties of neurons in temporal cortical visual areas of infant monkeys. Journal of Neurophysiology 70, 11151136.CrossRefGoogle Scholar
Rushton, S.K., Harris, J.M. & Wann, J.P. (1999). Steering, optic flow, and the respective importance of depth and retinal motion distribution. Perception 28, 255266.CrossRefGoogle Scholar
Rutschmann, R.M., Schrauf, M. & Greenlee, M.W. (2000). Brain activation during dichoptic presentation of optic flow stimuli. Experimental Brain Research 134, 533537.CrossRefGoogle Scholar
Schiff, W. (1965). Perception of impending collision: A study of visually directed avoidant behavior. Psychological Monographs: General and Applied 79, 126.CrossRefGoogle Scholar
Seiffert, A.E., Somers, D.C., Dale, A.M. & Tootell, R.B. (2003). Functional MRI studies of human visual motion perception: Texture, luminance, attention and after-effects. Cerebral Cortex 13, 340349.CrossRefGoogle Scholar
Shirai, N., Birtles, D.B., Wattam-Bell, J., Yamaguchi, M.K., Kanazawa, S. & Atkinson, J. (2006a). Anisotropic cortical responses for radial expansion/contraction in infants and adults. Perception 35, 4.Google Scholar
Shirai, N., Kanazawa, S. & Yamaguchi, M.K. (2004a). Asymmetry for the perception of expansion/contraction in infancy. Infant Behavior & Development 27, 315322.Google Scholar
Shirai, N., Kanazawa, S. & Yamaguchi, M.K. (2004b). Sensitivity to linear speed gradient of radial expansion flow in infancy. Vision Research 44, 31113118.Google Scholar
Shirai, N., Kanazawa, S. & Yamaguchi, M.K. (2006b). Anisotropic motion coherence sensitivities to expansion/contraction motion in early infancy. Infant Behavior & Development 29, 204209.Google Scholar
Smith, A.T., Wall, M.B., Williams, A.L. & Singh, K.D. (2006). Sensitivity to optic flow in human cortical areas MT and MST. European Journal of Neuroscience 23, 561569.CrossRefGoogle Scholar
Stoffregen, T.A. & Riccio, G.E. (1990). Response to optical looming in the retinal center and periphery. Ecological-Psychology 2, 251274.CrossRefGoogle Scholar
Stoffregen, T.A., Schmuckler, M.A. & Gibson, E.J. (1987). Use of central and peripheral optical flow in stance and locomotion in young walkers. Perception 16, 113119.CrossRefGoogle Scholar
Tanaka, K., Fukada, Y. & Saito, H.-A. (1989). Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the macaque monkey. Journal of Neurophysiology 62, 642656.CrossRefGoogle Scholar
Tanaka, K. & Saito, H.-A. (1989). Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. Journal of Neurophysiology 62, 626641.CrossRefGoogle Scholar
Tang, Y. & Norcia, A.M. (1995). An adaptive filter for steady-state evoked responses. Electroencephalography and Clinical Neurophysiology 3, 268277.CrossRefGoogle Scholar
Vaina, L.M. & Rushton, S.K. (2000). What neurological patients tell us about the use of optic flow. International Review of Neurobiology 44, 293313.CrossRefGoogle Scholar
Victor, J.D. & Mast, J. (1991). A new statistic for steady-state evoked potentials. Electroencephalogram Clinical Neurophysiology 78, 378388.CrossRefGoogle Scholar
Warren, W.H. & Mestre, D.R. (1991). Perception of circular heading from optical flow. Journal of Experimental Psychology: Human Perception and Performance 17, 2843.CrossRefGoogle Scholar
Warren, W.H., Morris, M.W. & Kalish, M. (1988). Perception of translational heading from optic flow. Journal of Experimental Psychology: Human Perception and Performance 14, 646660.Google Scholar
Wattam-Bell, J. (1991). Development of motion-specific cortical responses in infancy. Vision Research 31, 287297.CrossRefGoogle Scholar
Wattam-Bell, J.R.B. (1996). Development of visual motion processing. In Infant Vision, ed. Vital-Durand, F., Atkinson, J. & Braddick, O.J., pp. 7994. Oxford: Oxford University Press.CrossRef
Wunderlich, G., Marshall, J.C., Amunts, K., Weiss, P.H., Mohlberg, H., Zafiris, O., Zilles, K. & Fink, G.R. (2002). The importance of seeing it coming: A functional magnetic resonance imaging study of motion-in-depth towards the human observer. Neuroscience 112, 535540.CrossRefGoogle Scholar
Xiao, Q., Barborica, A. & Ferrera, V.P. (2006). Radial motion bias in macaque frontal eye field. Visual Neuroscience 23, 4960.CrossRefGoogle Scholar
Yonas, A., Bechtold, A.G., Frankel, D., Gordon, F.R., McRoberts, G., Norcia, A. & Sternfel, S. (1977). Development of sensitivity to information for impending collision. Perception & Psychophysics 21, 97104.CrossRefGoogle Scholar
Yonas, A., Oberg, C. & Norcia, A. (1978). Development of sensitivity to binocular information for the approach of an object. Developmental Psychology 14, 147152.CrossRefGoogle Scholar
Yonas, A., Pettersen, L. & Lockman, J. (1979). Young infants' sensitivity to optical information for collision. Canadian Journal of Psychology 33, 268276.CrossRefGoogle Scholar