Hostname: page-component-788cddb947-t9bwh Total loading time: 0 Render date: 2024-10-14T09:50:52.619Z Has data issue: false hasContentIssue false

A cortical locus for anisotropic overlay suppression of stimuli presented at fixation

Published online by Cambridge University Press:  02 September 2015

BRUCE C. HANSEN*
Affiliation:
Department of Psychology and Neuroscience Program, Colgate University, Hamilton, New York
BRUNO RICHARD
Affiliation:
Department of Psychology, Concordia University, Montréal, Québec, Canada
KRISTIN ANDRES
Affiliation:
Department of Psychology and Neuroscience Program, Colgate University, Hamilton, New York
AARON P. JOHNSON
Affiliation:
Department of Psychology, Concordia University, Montréal, Québec, Canada
BENJAMIN THOMPSON
Affiliation:
School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
EDWARD A. ESSOCK
Affiliation:
Department of Psychological & Brain Sciences, University of Louisville, Louisville, Kentucky
*
*Address correspondence to: Bruce C. Hansen, Department of Psychology, Neuroscience Program, Colgate University, 107B Olin Hall, Hamilton, NY 13346. E-mail: bchansen@colgate.edu

Abstract

Human contrast sensitivity for narrowband Gabor targets is suppressed when superimposed on narrowband masks of the same spatial frequency and orientation (referred to as overlay suppression), with suppression being broadly tuned to orientation and spatial frequency. Numerous behavioral and neurophysiological experiments have suggested that overlay suppression originates from the initial lateral geniculate nucleus (LGN) inputs to V1, which is consistent with the broad tuning typically reported for overlay suppression. However, recent reports have shown narrowly tuned anisotropic overlay suppression when narrowband targets are masked by broadband noise. Consequently, researchers have argued for an additional form of overlay suppression that involves cortical contrast gain control processes. The current study sought to further explore this notion behaviorally using narrowband and broadband masks, along with a computational neural simulation of the hypothesized underlying gain control processes in cortex. Additionally, we employed transcranial direct current stimulation (tDCS) in order to test whether cortical processes are involved in driving narrowly tuned anisotropic suppression. The behavioral results yielded anisotropic overlay suppression for both broadband and narrowband masks and could be replicated with our computational neural simulation of anisotropic gain control. Further, the anisotropic form of overlay suppression could be directly modulated by tDCS, which would not be expected if the suppression was primarily subcortical in origin. Altogether, the results of the current study provide further evidence in support of an additional overlay suppression process that originates in cortex and show that this form of suppression is also observable with narrowband masks.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Accornero, N., Pietro, L.V., Riccia, M.L. & Gregori, B. (2007). Visual evoked potentials modulation during direct current cortical polarization. Experimental Brain Research 178, 261266.CrossRefGoogle ScholarPubMed
Adelson, E.H. & Bergen, J.R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A 2(2), 284299.CrossRefGoogle ScholarPubMed
Akasaki, T., Sato, H., Yoshimura, Y., Ozeki, H. & Shimegi, S. (2002). Suppressive effects of receptive field surround on neuronal activity in the cat primary visual cortex. Neuroscience Research 43, 207220.CrossRefGoogle ScholarPubMed
Antal, A., Nitsche, M.A. & Paulus, W. (2001). External modulation of visual perception in humans. Neuroreport 12(16), 35533555.CrossRefGoogle ScholarPubMed
Antal, A., Kincses, T.Z., Nitsche, M.A. & Paulus, W. (2003a). Manipulation of phosphene thresholds by transcranial direct current stimulation in man. Neuropsychologia 150, 18021807.CrossRefGoogle ScholarPubMed
Antal, A., Kincses, T.Z., Nitsche, M.A. & Paulus, W. (2003b). Modulation of moving phosphene thresholds by transcranial direct current stimulation of V1 in human. Neuropsychologia 41, 18021807.CrossRefGoogle ScholarPubMed
Antal, A., Kincses, T.Z., Nitsche, M.A., Bartfai, O. & Paulus, W. (2004a). Excitability changes induved in the human primary visual cortex by transcranial direct current stimulation: Direct electrophysiological evidence. Investigative Ophthalmology & Visual Science 45, 702707.CrossRefGoogle ScholarPubMed
Antal, A., Nitsche, M.A., Kruse, W., Kincses, T.Z., Horrmann, K-L. & Paulus, W. (2004b). Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. Journal of Cognitive Neuroscience 16, 521527.CrossRefGoogle ScholarPubMed
Antal, A., Nitsche, M.A. & Paulus, W. (2006). Transcranial direct current stimulation and the visual cortex. Brain Research Bulletin, 68(6), 459463.CrossRefGoogle ScholarPubMed
Antal, A. & Paulus, W. (2008). Transcranial direct current stimulation and visual perception. Perception 37(3), 367374.CrossRefGoogle ScholarPubMed
Antal, A., Kovács, G., Chaieb, L., Paulus, W. & Greenlee, M.W. (2012). Cathodal stimulation of human MT+ leads to elevated fMRI signal: A tDCS-fMRI study. Restorative Neurology & Neuroscience 30, 255263.CrossRefGoogle Scholar
Baker, D.H., Meese, T.S. & Summers, R.J. (2007). Psychophysical evidence for two routes to suppression before binocular summation of signal in human vision. Neuroscience 146, 435448.CrossRefGoogle ScholarPubMed
Bauman, L.A. & Bonds, A.B. (1991). Inhibitory refinement of spatial frequency selectivity in single cells of the cat striate cortex. Vision Research 31(6), 933944.CrossRefGoogle ScholarPubMed
Bex, P.J., Mareschal, I. & Dakin, S.C. (2007). Contrast gain control in natural scenes. Journal of Vision 7(11), 112.CrossRefGoogle ScholarPubMed
Bikson, M. & Rahman, A. (2013). Origins of specificity during tDCS: Anatomical, activity-selective, and input-bias mechanisms. Frontiers in Human Neuroscience 7, 688.CrossRefGoogle ScholarPubMed
Bonds, A.B. (1989). Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex. Visual Neuroscience 2(1), 4155.CrossRefGoogle ScholarPubMed
Bonds, A.B. (1991). Temporal dynamics of contrast gain in single cells of cat striate cortex. Visual Neuroscience 6(03), 239255.CrossRefGoogle ScholarPubMed
Bonin, V., Mante, V. & Carandini, M. (2005). The suppressive field of neurons in lateral geniculate nucleus. Journal of Neuroscience 25, 1084410856.CrossRefGoogle ScholarPubMed
Bosking, W.H., Zhang, Y., Schofield, B. & Fitzpatrick, D. (1997). Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. Journal of Neuroscience 17(6), 21122127.CrossRefGoogle ScholarPubMed
Campbell, F.W. & Robson, J.G. (1968). Application of Fourier analysis to the visibility of gratings. Journal of Physiology 197(3), 551566.CrossRefGoogle Scholar
Carandini, M., Demb, J.B., Mante, V., Tolhurst, D.J., Dan, Y., Olshausen, B.A., Gallant, J. & Rust, N. (2005). Do we know what the early visual system does? Journal of Neuroscience 25(46), 1057710597.CrossRefGoogle Scholar
Carandini, M. & Heeger, D.J. (1994). Summation and division by neurons in primate visual cortex. Science 264, 13331336.CrossRefGoogle ScholarPubMed
Carandini, M. & Heeger, D.J. (2012). Normalization as a canonical neural computation. Nature Reviews Neuroscience 13, 5162.CrossRefGoogle Scholar
Carandini, M., Heeger, D.J. & Movshon, J.A. (1997). Linearity and normalization in simple cells of the macaque primary visual cortex. Journal of Neuroscience 17, 86218644.CrossRefGoogle ScholarPubMed
Carandini, M. & Ringach, D.L. (1997). Predictions of a recurrent model of orientation selectivity. Vision Research 37(21), 30613071.CrossRefGoogle ScholarPubMed
Cavanaugh, J.R., Bair, W. & Movshon, J.A. (2002). Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons. Journal of Neurophysiology 88, 25472556.CrossRefGoogle ScholarPubMed
Chance, F.S. & Abbott, L.F. (2000). Divisive inhibition in recurrent networks. Network: Compuational Neural System 11, 119129.CrossRefGoogle ScholarPubMed
Chance, F.S., Abbott, L.F. & Reyes, A.D. (2002). Gain modulation from background synaptic input. Neuron 35, 773782.CrossRefGoogle ScholarPubMed
Chapman, B. & Bonhoeffer, T. (1998). Overrepresentation of horizontal and vertical orientation preferences in developing ferret area 17. Proceedings of the National Academy of Sciences of the United States of America 95, 26092614.CrossRefGoogle ScholarPubMed
Chapman, B., Stryker, M.P. & Bonhoeffer, T. (1996). Development of orientation preference maps in ferret primary visual cortex. Journal of Neuroscience 16, 64436453.CrossRefGoogle ScholarPubMed
Chen, C.C. & Tyler, C.W. (2008). Excitatory and inhibitory interaction fields of flankers revealed by contrast-masking functions. Journal of Vision 8, 114.CrossRefGoogle ScholarPubMed
Chu, P., Milton, J. & Cowan, J. (1994). Connectivity and the dynamics of integrate-and-fire neural networks. International Journal of Bifurcation and Chaos 4(1), 237243.CrossRefGoogle Scholar
Coppola, D.M., White, L.E., Fitzpatrick, D. & Purves, D. (1998). Unequal representation of cardinal and oblique contours in ferret visual cortex. Proceedings of the National Academy of Sciences of the United States of America 95, 26212623.CrossRefGoogle ScholarPubMed
Creutzfeldt, O.D., Fromm, G.H. & Kapp, H. (1962). Influence of transcortical d-c currents on cortical neural activity. Experimental Neurology 5, 436452.CrossRefGoogle Scholar
Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D. & Bikson, M. (2009). Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation 2(4), 201207.CrossRefGoogle ScholarPubMed
Dayan, P. & Abbott, L.F. (2005). Theoretical Neuroscience: Computational And Mathematical Modeling Of Neural Systems, eds. Sejnowski, T.J. & Poggio, T., p. 480. Cambridge: The MIT Press.Google Scholar
DeAngelis, G.C., Robson, J.G., Ohzawa, I. & Freeman, R.D. (1992). Organization of suppression in receptive fields of neurons in cat visual cortex. Journal of Neurophysiology 68(1), 144163.CrossRefGoogle ScholarPubMed
DeAngelis, G.C., Freeman, R.D. & Ohzawa, I. (1994). Length and width tuning of neurons in the cat’s primary visual cortex. Journal of Neurophysiology 71, 347374.CrossRefGoogle ScholarPubMed
De Valois, R.L., Albrecht, D.G. & Thorell, L.G. (1982a). Spatial frequency selectivity of cells in macaque visual cortex. Vision Research 22(5), 545559.CrossRefGoogle ScholarPubMed
De Valois, R.L., Yund, E.W. & Hepler, N. (1982b). The orientation and direction selectivity of cells in macaque visual cortex. Vision Research 22(5), 531544.CrossRefGoogle ScholarPubMed
Essock, E.A., DeFord, J.K., Hansen, B.C. & Sinai, M.J. (2003). Oblique stimuli are seen best (not worst!) in naturalistic broadband stimuli: A horizontal effect. Vision Research 43, 13291335.CrossRefGoogle ScholarPubMed
Essock, E.A., Haun, A.M. & Kim, Y-J. (2009). An anisotropy of orientation-tuned suppression that matches the anisotropy of typical natural scenes. Journal of Vision 9(1), 115.CrossRefGoogle ScholarPubMed
Evans, B.D. & Stringer, S.M. (2013). How lateral connections and spiking dynamics may separate multiple objects moving together. PloS One 8(8), e69952.CrossRefGoogle ScholarPubMed
Field, D.J. (1987). Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Optical Society of America A 4(12), 23792394.CrossRefGoogle ScholarPubMed
Fitzpatrick, D. (2000). Seeing beyond the receptive field in primary visual cortex. Current Opinion in Neurobiology 10(4), 438443.CrossRefGoogle ScholarPubMed
Foley, J.M. (1994). Human luminance pattern-vision mechanisms: Masking experiments require a new model. Journal of the Optical Society of America A 11(6), 17101719.CrossRefGoogle ScholarPubMed
Freeman, T.C.B., Durand, S., Kiper, D.C. & Carandini, M. (2002). Suppression without inhibition in visual cortex. Neuron 35, 759771.CrossRefGoogle ScholarPubMed
Geisler, W.S. & Albrecht, D.G. (1992). Cortical neurons: Isolation of contrast gain control. Vision Research 32, 14091410.CrossRefGoogle ScholarPubMed
Graham, N. & Nachmias, J. (1971). Detection of grating patterns containing two spatial frequencies: A comparison of single-channel and multiple-channels models. Vision Research 11(3), 251259.CrossRefGoogle ScholarPubMed
Graham, N.V. & Sutter, A. (2000). Normalization: contrast-gain control in simple (Fourier) and complex (non-Fourier) pathways of pattern vision. Vision Research 40, 27372761.CrossRefGoogle ScholarPubMed
Hansen, B.C., Essock, E.A., Zheng, Y. & DeFord, J.K. (2003). Perceptual anisotropies in visual processing and their relation to natural image statistics. Network: Computation in Neural Systems 14(3), 501526.CrossRefGoogle ScholarPubMed
Hansen, B.C. & Essock, E.A. (2004). A horizontal bias in human visual processing of orientation and its correspondence to the structural components of natural scenes. Journal of Vision 4(12), 10441060.CrossRefGoogle Scholar
Hansen, B.C. & Essock, E.A. (2006). Anisotropic local contrast normalization: The role of stimulus orientation and spatial frequency bandwidths in the oblique and horizontal effect perceptual anisotropies. Vision Research 46, 43984415.CrossRefGoogle ScholarPubMed
Hansen, B.C., Haun, A.M. & Essock, E.A. (2008). The “Horizontal effect”: A perceptual anisotropy in visual processing of naturalistic broadband stimuli. In Visual Cortex: New Research, eds. Portocello, T.A. & Velloti, R.B., New York: Nova Science Publishers.Google Scholar
Hansen, B.C. & Hess, R.F. (2012). On the effectiveness of noise masks: Naturalistic vs. un-naturalistic image statistics. Vision Research 60, 101113.CrossRefGoogle ScholarPubMed
Hansen, B.C., Andres, K., Essock, E.A., Spiegel, D.P. & Thompson, B. (2013). A cortical locus for overlay suppression with broadband stimuli revealed through transcranial direct current stimulation. Journal of Vision 13, 38.CrossRefGoogle Scholar
Haun, A.M. & Essock, E.A. (2010). Contrast sensitivity for oriented patterns in 1/f noise: Contrast response and the horizontal effect. Journal of Vision 10(10), 112.CrossRefGoogle ScholarPubMed
Haun, A.M. & Peli, E. (2013). Perceived contrast in complex images. Journal of Vision 13, 121.CrossRefGoogle ScholarPubMed
Heeger, D.J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience 9, 181197.CrossRefGoogle ScholarPubMed
Holt, G. & Koch, C. (1997). Shunting inhibition does not have a divisive effect on firing rates. Neural Computation 9(5), 10011013.CrossRefGoogle Scholar
Huang, P-C. & Hess, R.F. (2008). The dynamics of collinear facilitation: Fast but sustained. Vision Research 48, 27152722.CrossRefGoogle ScholarPubMed
Jacobson, L., Koslowsky, M. & Lavidor, M. (2012). TDCS polarity effects in motor and cognitive domains: A meta-analytical review. Experimental Brain Research 216, 110.CrossRefGoogle ScholarPubMed
Jones, J.P. & Palmer, L.A. (1987). The two-dimensional spatial structure of simple receptive fields in cat striate cortex. Journal of Neurophysiology 58(6), 11871211.CrossRefGoogle ScholarPubMed
Kennedy, H., Martin, K.A., Orban, G.A. & Whitteridge, D. (1985). Receptive field properties of neurons in visual area 1 and visual area 2 in the baboon. Neuroscience 14, 405415.CrossRefGoogle ScholarPubMed
Kim, Y-J., Gheiratmand, M. & Mullen, K.T. (2013). Cross-orientation masking in human color vision: Application of a two-stage model to assess dichoptic and monocular sources of suppression. Journal of Vision 13(6), 114.CrossRefGoogle ScholarPubMed
Kim, Y-J., Haun, A.M. & Essock, E.A. (2010). The horizontal effect in suppression: Anisotropic overlay and surround suppression at high and low speeds. Vision Research 50(9), 838849.CrossRefGoogle ScholarPubMed
Kohn, A. (2007). Visual Adaptation: Physiology, mechanisms, and functional benefits. Journal of Neurophysiology 97(5), 31553164.CrossRefGoogle ScholarPubMed
Kraft, A., Roehmel, J., Olma, M.C., Schmidt, S., Irlbacher, K. & Brandt, S.A. (2010). Transcranial direct current stimulation affects visual perception measured by threshold perimetry. Experimental Brain Research 207(3–4), 283290.CrossRefGoogle ScholarPubMed
Legge, G.E. & Foley, J.M. (1980). Contrast masking in human vision. Journal of the Optical Society of America 70(12), 14581471.CrossRefGoogle ScholarPubMed
Li, B., Peterson, M.R. & Freeman, R.D. (2003). Oblique effect: A neural basis in the visual cortex. Journal of Neurophysiology 90, 204217.CrossRefGoogle ScholarPubMed
Li, B., Thompson, J.K., Duong, T., Peterson, M.R. & Freeman, R.D. (2006). Origins of cross-orientation suppression in the visual cortex. Journal of Neurophysiology 96, 17551764.CrossRefGoogle ScholarPubMed
Liu, Y.H. & Wang, X.J. (2001). Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron. Journal of Computational Neuroscience 10(1), 2545.CrossRefGoogle ScholarPubMed
Ly, C. & Doiron, B. (2009). Divisive gain modulation with dynamic stimuli in integrate-and-fire neurons. PLoS Computational Biology 5(4), 112.CrossRefGoogle ScholarPubMed
Maffei, L. & Campbell, F.W. (1970). Neurophysiological localization of the vertical and horizontal visual coordinates in man. Science 167, 386387.CrossRefGoogle ScholarPubMed
Maffei, L. & Fiorentini, A. (1973). The visual cortex as a spatial frequency analyser. Vision Research 13(7), 12551267.CrossRefGoogle ScholarPubMed
Mansfield, R.J. (1974). Neural basis of orientation perception in primate vision. Science 186, 11331135.CrossRefGoogle ScholarPubMed
Mansfield, R.J. & Ronner, S.F. (1978). Orientation anisotropy in monkey visual cortex. Brain Research 149, 229234.CrossRefGoogle Scholar
McCormick, D.A., Connors, B.W., Lighthall, J.W. & Prince, D.A. (1985). Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. Journal of Neurophysiology 54(4), 782806.CrossRefGoogle ScholarPubMed
Meese, T.S. & Baker, D.H. (2009). Cross-orientation masking is speed invariant cross-orientation masking is speed invariant between ocular pathways but speed dependent within them. Journal of Vision 9, 115.CrossRefGoogle Scholar
Meese, T.S. & Hess, R.F. (2004). Low spatial frequencies are suppressively masked across spatial scale, orientation, field position, and eye of origin. Journal of Vision 4(10), 843859.CrossRefGoogle ScholarPubMed
Meese, T.S. & Holmes, D.J. (2007). Spatial and temporal dependencies of cross-orientation suppression in human vision. Proceedings of the Royal Society of London B 274(1606), 127136.Google ScholarPubMed
Meese, T.S. & Holmes, D.J. (2010). Orientation masking and cross-orientation suppression (XOS): Implications for estimates of filter bandwidth. Journal of Vision 10(12), 9.CrossRefGoogle ScholarPubMed
Meese, T.S., Challinor, K.L., Summers, R.J. & Baker, D.H. (2009). Suppression pathways saturate with contrast for parallel surrounds but not for superimposed cross-oriented masks. Vision Research 49(24), 29272935.CrossRefGoogle Scholar
Meier, L. & Carandini, M. (2002). Masking by fast gratings. Journal of Vision 2(4), 293301.CrossRefGoogle ScholarPubMed
Merigan, W.H. & Maunsell, J.H. (1993). How parallel are the primate visual pathways? Annual Review of Neuroscience 16, 369402.CrossRefGoogle ScholarPubMed
Minhas, P., Datta, A. & Bikson, M. (2011). Cutaneous perception during tDCS: Role of electrode shape and sponge salinity. Clinical Neurophysiology 122, 637638.CrossRefGoogle ScholarPubMed
Morrone, M.C., Burr, D.C. & Maffei, L. (1982). Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence. Proceedings of the Royal Society London, B 216(1204), 335354.Google ScholarPubMed
Morrone, M.C., Burr, D.C. & Speed, H.D. (1987). Cross-orientation inhibition in cat is GABA mediated. Experimental Brain Research 67(3), 635644.CrossRefGoogle ScholarPubMed
Nitsche, M.A. & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology 527(3), 633639.CrossRefGoogle ScholarPubMed
Nitsche, M.A., Fricke, K., Henschke, U., Schlitterlau, A., Liebetanz, D., Lang, N., Henning, S., Tergau, F. & Paulus, W. (2003). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. Journal of Physiology 533, 293301.CrossRefGoogle Scholar
Nitsche, M.A., Doemkes, S., Karakose, T., Antal, A., Liebetanz, D., Lang, N., Tergau, F. & Paulus, W. (2007). Shaping the effects of transcranial direct current stimulation of the human motor cortex. Journal of Neurophysiology 97, 31093117.CrossRefGoogle ScholarPubMed
Nitsche, M.A., Cohen, L.G., Wassermann, E.M., Priori, A., Lang, N., Antal, A., Paulus, W., Hummel, F., Boggio, P.S., Fregni, F. & Pascual-Leone, A. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation 1(3), 206223.CrossRefGoogle ScholarPubMed
Nitsche, M.A. & Paulus, W. (2011). Transcranial direct current stimulation—Update 2011. Restorative Neurology and Neuroscience 29(3), 463492.CrossRefGoogle ScholarPubMed
Ohzawa, I., Sclar, G. & Freeman, R.D. (1985). Contrast gain control in the cat’s visual system. The Journal of Neurophysiology, 54(3), 651667.CrossRefGoogle ScholarPubMed
Olma, M.C., Kraft, A., Roehmel, J., Irlbacher, K. & Brandt, S.A. (2011). Excitability changes in the visual cortex quantified with signal detection analysis. Restorative Neurology and Neuroscience 29, 453461.CrossRefGoogle ScholarPubMed
Olzak, L.A. (1985). Interactions between spatially tuned mechanisms: Converging evidence. Journal of the Optical Society of America A 2(9), 15511559.CrossRefGoogle ScholarPubMed
Olzak, L.A. & Thomas, J.P. (1991). When orthogonal orientations are not processed independently. Vision Research 31(1), 5157.CrossRefGoogle Scholar
Osaki, H., Naito, T., Sadakane, O., Okamoto, M. & Sato, H. (2011). Surround suppression by high spatial frequency stimuli in the cat primary visual cortex. European Journal of Neuroscience 33, 923932.CrossRefGoogle ScholarPubMed
Pantle, A. & Sekuler, R. (1968). Size-detecting mechanisms in human vision. Science 162(858), 11461148.CrossRefGoogle ScholarPubMed
Petrov, Y., Carandini, M. & McKee, S. (2005). Two distinct mechanisms of suppression in human vision. Journal of Neuroscience 25(38), 87048707.CrossRefGoogle ScholarPubMed
Petrov, Y., Verghese, P. & McKee, S.P. (2006). Collinear facilitation is largely uncertainty reduction. Journal of Vision 6(2), 170178.CrossRefGoogle ScholarPubMed
Phillips, G.C. & Wilson, H.R. (1984). Orientation bandwidths of spatial mechanisms measured by masking. Journal of the Optical Society of America A 1(2), 226232.CrossRefGoogle ScholarPubMed
Polat, U. & Norcia, A.M. (1996). Neurophysiological evidence for contrast dependent long-range facilitation and suppression in the human visual cortex. Vision Research 36(14), 20992109.CrossRefGoogle ScholarPubMed
Polat, U. & Sagi, D. (1993). Lateral interactions between spatial channels: Suppression and facilitation revealed by lateral masking experiments. Vision Research 33, 993999.CrossRefGoogle ScholarPubMed
Pugh, M.C., Ringach, D.L., Shapley, R. & Shelley, M.J. (1999). Computational modeling of orientation tuning dynamics in monkey primary visual cortex. Journal of Computational Neuroscience 8(2), 143159.CrossRefGoogle Scholar
Pugh, M.C., Ringach, D.L., Shapley, R. & Shelley, M.J. (2000). Computational modeling of orientation tuning dynamics in monkey primary visual cortex. Journal of Computational Neuroscience 8, 143159.CrossRefGoogle ScholarPubMed
Purpura, D.P. & McMurty, J.G. (1965). Intracellular activities and evoked potential changes during polarization of motor cortex. Journal of Neurophysiology 28, 166185.CrossRefGoogle ScholarPubMed
Priebe, N.J. & Ferster, D. (2006). Mechanisms underlying cross-orientation suppression in cat visual cortex. Nature Neuroscience 9, 552561.CrossRefGoogle ScholarPubMed
Radman, T., Ramos, R.L., Brumberg, J.C. & Bikson, M. (2009). Role of cortical cell type and morphology in sub-and suprathreshold uniform electric field stimulation. Brain Stimulation 2(4), 215228.CrossRefGoogle ScholarPubMed
Rahman, A., Reato, D., Arlotti, M., Gasca, F., Datta, A., Parra, L.C. & Bikson, M. (2013). Cellular effects of acute direct current stimulation: Somatic and synaptic terminal effects. The Journal of Physiology 591(Pt 10), 25632578.CrossRefGoogle ScholarPubMed
Reato, D., Rahman, A., Bikson, M. & Parra, L.C. (2010). Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. Journal of Neuroscience, 30(45), 1506715079.CrossRefGoogle ScholarPubMed
Reid, R. & Alonso, J. (1995). Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378(16), 281284.CrossRefGoogle ScholarPubMed
Ringach, D.L., Hawken, M.J. & Shapley, R. (2002). Receptive field structure of neurons in monkey primary visual cortex revealed by stimulation with natural image sequences. Journal of Vision 2(1), 1224.CrossRefGoogle ScholarPubMed
Ross, J. & Speed, H.D. (1991). Contrast adaptation and contrast masking in human vision. Proceedings. Biological Sciences / The Royal Society 246(1315), 6169.Google ScholarPubMed
Rudolph-Lilith, M., Dubois, M. & Destexhe, A. (2009). Analytical integrate-and-fire neuron models with conductance-based dynamics and realistic PSP time course for event-driven simulation strategies. In BMC Neuroscience, Vol. 10, p. 23.Google Scholar
Sanchez-Vives, M.V., Nowak, L.G. & McCormick, D.A. (2000a). Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro. Journal of Neuroscience 20(11), 42864299.CrossRefGoogle ScholarPubMed
Sanchez-Vives, M.V., Nowak, L.G. & McCormick, D.A. (2000b). Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo. Journal of Neuroscience 20(11), 42674285.CrossRefGoogle ScholarPubMed
Schwartz, O. & Simoncelli, E.P. (2001). Natural signal statistics and sensory gain control. Nature Neuroscience 4, 819825.CrossRefGoogle ScholarPubMed
Shapley, R. & Lennie, P. (1985). Spatial frequency analysis in the visual system. Annual Review of Neuroscience 8, 547583.CrossRefGoogle ScholarPubMed
Somers, D., Nelson, S. & Sur, M. (1995). An emergent model of orientation selectivity in cat visual cortical simple cells. Journal of Neuroscience 75(8), 54485465.CrossRefGoogle Scholar
Spiegel, D.P., Hansen, B.C., Byblow, W.D. & Thompson, B. (2012). Anodal transcranial direct current stimulation reduces psychophysically measured surround suppression in the human visual cortex. PLoS One 7(5), 19.CrossRefGoogle ScholarPubMed
Stagg, C.J., Best, J.G., Stephenson, M.C., O’Shea, J., Wylezinska, M., Kincses, Z.T., Morris, P.G., Matthews, P.M. & Johansen-Berg, H. (2009). Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. Journal of Neuroscience 29(16), 52025206.CrossRefGoogle ScholarPubMed
Stagg, C.J. & Nitsche, M.A. (2011). Physiological basis of transcranial direct current stimulation. Neuroscientist 17(1), 3753.CrossRefGoogle ScholarPubMed
Tehovnik, E.J. (1996). Electrical stimulation of neural tissue to evoke behavioral responses. Journal of Neuroscience Methods 65, 117.CrossRefGoogle ScholarPubMed
Tiao, Y.C. & Blakemore, C. (1976). Functional organization in the visual cortex of the golden hamster. Journal of Comparative Neurology 168, 459481.Google ScholarPubMed
Troyer, T.W., Krukowski, A.E. & Miller, K.D. (2002). LGN input to simple cells and contrast-invariant orientation tuning: An analysis. Journal of Neurophysiology 87, 27412751.CrossRefGoogle ScholarPubMed
Troyer, T.W., Krukowski, A.E., Priebe, N.J. & Miller, K.D. (1998). Contrast-invariant orientation tuning in cat visual cortex: Thalamocortical input tuning and correlation-based intracortical connectivity. Journal of Neuroscience 18(15), 59085927.CrossRefGoogle ScholarPubMed
Tyler, C.W. (1997). Colour bit-stealing to enhance the luminance resolution of digital displays on a single pixel basis. Spatial Vision 10(4), 369377.CrossRefGoogle ScholarPubMed
Walker, G.A., Ohzawa, I. & Freeman, R.D. (2000). Suppression outside the classical cortical receptive field. Visual Neuroscience 17, 369379.CrossRefGoogle ScholarPubMed
Watson, A. & Solomon, J. (1997). Model of visual contrast gain control and pattern masking. Journal of the Optical Society of America A 14(9), 2379.CrossRefGoogle ScholarPubMed
Wilson, H.R. & Bergen, J.R. (1979). A four mechanism model for threshold spatial vision. Vision Research 19(1), 1932.CrossRefGoogle ScholarPubMed
Wilson, H.R. & Humanski, R. (1993). Spatial frequency adaptation and contrast gain control. Vision Research 33, 11331149.CrossRefGoogle ScholarPubMed
Yu, C., Klein, S.A. & Levi, D.M. (2002). Facilitation of contrast detection by cross-oriented surround stimuli and its psychophysical mechanisms. Journal of Vision 2(3), 243255.CrossRefGoogle ScholarPubMed
Yu, H.B. & Shou, T.D. (2000). The oblique effect revealed by optical imaging in primary visual cortex of cats. Acta Physiologica Sinica 52, 431434.Google ScholarPubMed
Zemon, V., Gutowski, W. & Horton, T. (1983). Orientational anisotropy in the human visual system: An evoked potential and psychophysical study. International Journal of Neuroscience 19, 259286.CrossRefGoogle ScholarPubMed