Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-28T05:56:21.765Z Has data issue: false hasContentIssue false

Causal Relationship Between Inflammation and Preeclampsia: Genetic Evidence from a Mendelian Randomization Study

Published online by Cambridge University Press:  17 July 2023

Qiongxiang Zhong
Affiliation:
No.2 Obstetrics and Gynecology Department, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
Chanjiao Yao
Affiliation:
No.2 Obstetrics and Gynecology Department, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
Wei Zhong*
Affiliation:
No.2 Obstetrics and Gynecology Department, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
*
Corresponding author: Wei Zhong; Email: drzhongwei@163.com
Get access

Abstract

Preeclampsia (PE) is a hypertensive disorder of pregnancy. PE patients were reported to have higher serum levels of C-reactive protein (CRP), interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α) than those in healthy controls. However, whether the expressions of these inflammation biomarkers have a causal relationship with PE is unspecified. We applied the Mendelian randomization method to infer the causal relationship between inflammation biomarkers (e.g., CRP, IL-6, interleukin 1 receptor antagonist [IL-1ra] and TNF-α) and PE. Single nucleotide polymorphisms (SNPs) strongly related to inflammation biomarkers were used as instrumental variables. CRP, IL-1ra and IL-6 levels showed no significant effect on PE progression, while the genetic predicted higher level of TNF-α significantly increased the risk of PE (OR per 1-SD increase in TNF-α: 4.33; 95% CI [1.99, 9.39]; p = .00021). The findings suggest that pro-inflammatory activity of TNF-α could be a determinant for PE progression. More antenatal care should be given to those pregnant women with higher level of inflammation biomarkers, especially TNF-α.

Type
Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Society for Twin Studies

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahluwalia, T. A.-O., Prins, B. P., Abdollahi, M., Armstrong, N. J., Aslibekyan, S., Bain, L., Jefferis, B., Baumert, J., Beekman, M., Ben-Shlomo, Y., Bis, J. C., Mitchell, B. D., de Geus, E., Delgado, G. E., Marek, D., Eriksson, J., Kajantie, E., Kanoni, S., Kemp, J. P., … Alizadeh, B. Z. (2021). Genome-wide association study of circulating interleukin 6 levels identifies novel loci. Human Molecular Genetics, 30, 393409. doi: 10.1093/hmg/ddab023 CrossRefGoogle ScholarPubMed
Ardissino, M., Slob, E. A. W., Millar, O., Reddy, R. K., Lazzari, L., Patel, K. H. K., Ryan, D., Johnson, M. R., Gill, D., & Ng, F. S. (2022). Maternal hypertension increases risk of preeclampsia and low fetal birthweight: genetic evidence from a Mendelian randomization study. Hypertension, 79, 588598. https://doi.org/doi:10.1161/HYPERTENSIONAHA.121.18617 CrossRefGoogle ScholarPubMed
Bowden, J., Davey Smith, G., & Burgess, S. (2015). Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. International Journal of Epidemiology, 44, 512525. https://doi.org/10.1093/ije/dyv080 CrossRefGoogle ScholarPubMed
Bowden, J., Davey Smith, G., Haycock, P. C., & Burgess, S. (2016). Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genetic Epidemiology, 40, 304314. https://doi.org/10.1002/gepi.21965 CrossRefGoogle ScholarPubMed
Brion, M. J., Shakhbazov, K., & Visscher, P. M. (2013). Calculating statistical power in Mendelian randomization studies. International Journal of Epidemiology, 42, 14971501. https://doi.org/10.1093/ije/dyt179 CrossRefGoogle ScholarPubMed
Burgess, S., Dudbridge, F., & Thompson, S. G. (2016). Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods. Statistics in Medicine, 35, 18801906. https://doi.org/10.1002/sim.6835 CrossRefGoogle ScholarPubMed
Conrad, K. P., & Benyo, D. F. (1997). Placental cytokines and the pathogenesis of preeclampsia. American Journal of Reproductive Immunology, 37, 240249. https://doi.org/10.1111/j.1600-0897.1997.tb00222.x CrossRefGoogle ScholarPubMed
Dalbeth, N., Topless, R., Flynn, T., Cadzow, M., Bolland, M. J., & Merriman, T. R. (2015). Mendelian randomization analysis to examine for a causal effect of urate on bone mineral density. Journal of Bone and Mineral Research, 30, 985991. https://doi.org/10.1002/jbmr.2434 CrossRefGoogle ScholarPubMed
Davey Smith, G., & Hemani, G. (2014). Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Human Molecular Genetics, 23, R8998. https://doi.org/10.1093/hmg/ddu328 CrossRefGoogle ScholarPubMed
Folkersen, L., Gustafsson, S., Wang, Q., & Hansen, D. H. (2020). Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. Nature Metabolism, 2, 11351148. https://doi.org/10.1038/s42255-020-00287-2 CrossRefGoogle ScholarPubMed
Founds, S. A., Powers, R. W., Patrick, T. E., Ren, D., Harger, G. F., Markovic, N., & Roberts, J. M. (2008). A comparison of circulating TNF-alpha in obese and lean women with and without preeclampsia. Hypertension in Pregnancy, 27, 3948. https://doi.org/10.1080/10641950701825838 CrossRefGoogle ScholarPubMed
Freeman, G., Cowling, B. J., & Schooling, C. M. (2013). Power and sample size calculations for Mendelian randomization studies using one genetic instrument. International Journal of Epidemiology, 42, 11571163. https://doi.org/10.1093/ije/dyt110 CrossRefGoogle ScholarPubMed
Gray, K. J., Saxena, R., & Karumanchi, S. A. (2018). Genetic predisposition to preeclampsia is conferred by fetal DNA variants near FLT1, a gene involved in the regulation of angiogenesis. American Journal of Obstetrics and Gynecology, 218, 211218. https://doi.org/10.1016/j.ajog.2017.11.562 CrossRefGoogle ScholarPubMed
Greenland, S. (1990). Randomization, statistics, and causal inference. Epidemiology, 1, 421429.CrossRefGoogle ScholarPubMed
Guven, M. A., Coskun, A., Ertas, I. E., Aral, M., Zencirci, B., & Oksuz, H. (2009). Association of maternal serum CRP, IL-6, TNF-alpha, homocysteine, folic acid and vitamin B12 levels with the severity of preeclampsia and fetal birth weight. Hypertension in Pregnancy, 28, 190200. https://doi.org/10.1080/10641950802601179 CrossRefGoogle ScholarPubMed
Hansson, G. K. (2005). Inflammation, atherosclerosis, and coronary artery disease. New England Journal of Medicine, 352, 16851695. https://doi.org/10.1056/NEJMra043430 CrossRefGoogle ScholarPubMed
Khedagi, A. M., & Bello, N. A. (2021). Hypertensive disorders of pregnancy. Clinical Cardiology, 39, 7790. https://doi.org/10.1016/j.ccl.2020.09.005 CrossRefGoogle ScholarPubMed
Lambert, G., Brichant, J. F., Hartstein, G., Bonhomme, V., & Dewandre, P. Y. (2014). Preeclampsia: An update. Acta Anaesthesiologica Belgica, 65, 137149.Google ScholarPubMed
Ligthart, S., Vaez, A., Võsa, U., Stathopoulou, M. G., de Vries, P. S., Prins, B. P., Van der Most, P. J., Tanaka, T., Naderi, E., Rose, L. M., Wu, Y., Karlsson, R., Barbalic, M., Lin, H., Pool, R., Zhu, G., Macé, A., Sidore, C., Trompet, S., … Alizadeh, B. Z. (2018). Genome analyses of >200,000 individuals identify 58 loci for chronic inflammation and highlight pathways that link inflammation and complex disorders. American Journal of Human Genetics, 103, 691706. https://doi.org/10.1016/j.ajhg.2018.09.009 CrossRefGoogle ScholarPubMed
Ma’ayeh, M., & Costantine, M. M. (2020). Prevention of preeclampsia. Seminars in Fetal & Neonatal Medicine, 25, 101123. https://doi.org/10.1016/j.siny.2020.101123 CrossRefGoogle ScholarPubMed
Perucci, L. O., Corrêa, M. D., Dusse, L. M., Gomes, K. B., & Sousa, L. P. (2017). Resolution of inflammation pathways in preeclampsia ¾ A narrative review. Immunology Research, 65, 774789. https://doi.org/10.1007/s12026-017-8921-3 CrossRefGoogle Scholar
Pierce, B. L., & Burgess, S. (2013). Efficient design for Mendelian randomization studies: Subsample and 2-sample instrumental variable estimators. American Journal of Epidemiology, 178, 11771184. https://doi.org/10.1093/aje/kwt084 CrossRefGoogle ScholarPubMed
Prins, B. P. (2016). Inflammatory biomarker genomics: From discovery to causality [Unpublished doctoral thesis]. University of Gronginen, https://research.rug.nl/en/publications/inflammatory-biomarker-genomics-from-discovery-to-causality Google Scholar
Raguema, N., Gannoun, M. B. A., Zitouni, H., Meddeb, S., Benletaifa, D., Lavoie, J. L., Almawi, W. Y., & Mahjoub, T. (2018). Interleukin-10 rs1800871 (-819C/T) and ATA haplotype are associated with preeclampsia in a Tunisian population. Pregnancy Hypertension, 11, 105110. https://doi.org/10.1016/j.preghy.2018.01.011 CrossRefGoogle Scholar
Reslan, O. M., & Khalil, R. A. (2010). Molecular and vascular targets in the pathogenesis and management of the hypertension associated with preeclampsia. Cardiovascular & Hematological Agents in Medicinal Chemistry, 8, 204226. https://doi.org/10.2174/187152510792481234 CrossRefGoogle ScholarPubMed
Roberts, J. M., Taylor, R. N., Musci, T. J., Rodgers, G. M., Hubel, C. A., & McLaughlin, M. K. (1989). Preeclampsia: An endothelial cell disorder. American Journal of Obstetrics and Gynecology, 161, 12001204. https://doi.org/10.1016/0002-9378(89)90665-0 CrossRefGoogle ScholarPubMed
Roberts, J. M., August, P. A., Bakris, G., Barton, J. R., Bernstein, I. M., Druzin, M., Gaiser, R. R., Granger, J. R., Jeyabalan, A., Johnson, D. D., Ananth Karumanchi, S., Lindheimer, M., Owens, M. Y., Saade, G. R., Sibai, B. M., Spong, C. Y., Tsigas, E., Joseph, G. F., O’Reilly, N., … Ngaiza, K. (2013). Hypertension in pregnancy: Executive summary. Obstetrics & Gynecology, 122, 11221131. https://doi.org/10.1097/01.aog.0000437382.03963.88 Google Scholar
Rosser, M. L., & Katz, N. T. (2013). Preeclampsia: An obstetrician’s perspective. Advances in Chronic Kidney Disease, 20, 287296.CrossRefGoogle ScholarPubMed
Shaw, J., Tang, Z., Schneider, H., Saljé, K., Hansson, S. R., & Guller, S. (2016). Inflammatory processes are specifically enhanced in endothelial cells by placental-derived TNF-α: Implications in preeclampsia (PE). Placenta, 43, 18. https://doi.org/10.1016/j.placenta.2016.04.015 CrossRefGoogle ScholarPubMed
Subha, M., Pal, P., Pal, G. K., Habeebullah, S., Adithan, C., & Sridhar, M. G. (2016). Decreased baroreflex sensitivity is linked to sympathovagal imbalance, low-grade inflammation, and oxidative stress in pregnancy-induced hypertension. Clinical and Experimental Hypertension, 38, 666672. https://doi.org/10.1080/10641963.2016.1200596 CrossRefGoogle ScholarPubMed
Venkatesh, S. A.-O., Ferreira, T., Benonisdottir, S., Rahmioglu, N. A.-O., Becker, C. A.-O., Granne, I. A.-O., Zondervan, K. A.-O., Holmes, M. A.-O., Lindgren, C. A.-O., & Wittemans, L. A.-O. X. (2022). Obesity and risk of female reproductive conditions: A Mendelian randomisation study. PLoS Medicine, 19, e1003679.CrossRefGoogle ScholarPubMed
Wang, Y., Li, B., & Zhao, Y. (2022). Inflammation in preeclampsia: Genetic biomarkers, mechanisms, and therapeutic strategies. Frontiers in Immunology, 13, 883404. https://doi.org/10.3389/fimmu.2022.883404 CrossRefGoogle ScholarPubMed
Zheng, J., Baird, D., Borges, M. C., Bowden, J., Hemani, G., Haycock, P., Evans, D. M., & Smith, G. D. (2017). Recent developments in Mendelian randomization studies. Current Epidemiology Reports, 4, 330345. https://doi.org/10.1007/s40471-017-0128-6 CrossRefGoogle ScholarPubMed
Supplementary material: File

Zhong et al. supplementary material

Tables S1-S3

Download Zhong et al. supplementary material(File)
File 22.8 KB