Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-26T01:45:58.587Z Has data issue: false hasContentIssue false

Candidate Genes for Prediction of Efficacy and Safety of Statin Therapy in the Kazakh Population

Published online by Cambridge University Press:  25 July 2023

Raikhan Y. Tuleutayeva
Affiliation:
Department of Pharmacology named after Professor M. Mussin, Semey Medical University, Semey, Republic of Kazakhstan
Assem R. Makhatova*
Affiliation:
Department of Pharmacology named after Professor M. Mussin, Semey Medical University, Semey, Republic of Kazakhstan
Saule O. Rakhyzhanova
Affiliation:
Department of Normal Physiology, Semey Medical University, Semey, Republic of Kazakhstan
Lashyn K. Zhazykbayeva
Affiliation:
Department of Propaedeutics of Internal Diseases, Semey Medical University, Semey, Republic of Kazakhstan
Dana K. Kozhakhmetova
Affiliation:
Department of Internal Diseases and Rheumatology, Semey Medical University, Semey, Republic of Kazakhstan
*
Corresponding author: Assem R. Makhatova; Email: assem.makhat@gmail.com
Get access

Abstract

The purpose of this research was to determine the frequency of mutation of the cytochrome CYP3A5 genes and transport proteins SLCO1B1 and MDR1 in patients with coronary heart disease in the Kazakh nation. A prospective cohort clinical and genetic study was conducted. The study was conducted in 2017−2019. Medical records containing information about drug prescription conducted in hospitals and outpatient departments were carefully analyzed. In the examined group of 178 patients treated with statins, a significant frequency of genetic variants that determine the increased risk of complications of statin use was revealed. There was a tendency toward an increase in the activity of creatine phosphokinase (CPK) in the blood upon detection of the A6986G mutation of the cytochrome gene and SLCO1B1 (c.521T>C) gene of the transport protein OATP1B1. In the studied Kazakh population, the presence of a homozygous mutant SLCO1B1 gene of the transport protein can be recommended as a genetic marker for the undesirability of using antihypercholesterolemic therapy with statins, which simultaneously leads to a decrease in the effectiveness of treatment and an increase in the risk of side effects.

Type
Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Society for Twin Studies

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adhyaru, B. B., & Jacobson, T. A. (2018). Safety and efficacy of statin therapy. Nature Reviews Cardiology, 15, 757769. https://doi.org/10.1038/s41569-018-0098-5 CrossRefGoogle ScholarPubMed
Athyros, V. G., Katsiki, N., Karagiannis, A., & Mikhailidis, D. P. (2015). High-intensity statin therapy and regression of coronary atherosclerosis in patients with diabetes mellitus. Journal of Diabetes and its Complications, 29, 142145. https://doi.org/10.1016/j.jdiacomp.2014.10.004 CrossRefGoogle ScholarPubMed
Bellosta, S., & Corsini, A. (2018). Statin drug interactions and related adverse reactions: An update. Expert Opinion on Drug Safety, 17, 2537. https://doi.org/10.1080/14740338.2018.1394455 CrossRefGoogle ScholarPubMed
Correale, M., Abruzzese, S., Greco, C. A., Concilio, M., Di Biase, M., & Brunetti, N. D. (2014). Pleiotropic effects of statin in therapy in heart failure: A review. Current Vascular Pharmacology, 12, 873884. https://doi.org/10.2174/1570161112999141127161508 CrossRefGoogle ScholarPubMed
Glants, S. (1998). Biomedical statistics. Praktika.Google Scholar
Hopewell, J. C, Reith, C., & Armitage, J. (2014). Pharmacogenomics of statin therapy: Any new insights in efficacy or safety? Current Opinion in Lipidology, 25, 438445. https://doi.org/10.1097/MOL.0000000000000125 CrossRefGoogle ScholarPubMed
Jiang, J., Tang, Q., Feng, J., Dai, R., Wang, Y., Yang, Y., Tang, X., Deng, C., Zeng, H., Zhao, Y., & Zhang, F. (2016). Association between SLCO1B1 -521T>C and -388A>G polymorphisms and risk of statin-induced adverse drug reactions: A meta-analysis. Springerplus, 5, 1368. https://doi.org/10.1186/s40064-016-2912-z CrossRefGoogle ScholarPubMed
Kolovou, G., Kolovou, V., Ragia, G., Mihas, C., Diakoumakou, O., Vasiliadis, I., Mavrogeni, S., Vartela, V., & Manolopoulos, V. G. (2015). CYP3A5 genotyping for assessing the efficacy of treatment with simvastatin and atorvastatin. Genetics and Molecular Biology, 38, 129137. https://doi.org/10.1590/S1415-4757382220140239 CrossRefGoogle ScholarPubMed
Kowalik, A., Zalewski, K., Kopczynski, J., Siolek, M., Lech, M., Hincza, K., Kalisz, J., Chrapek, M., Zieba, S., Furmanczyk, O., Jedlinski, M., Chlopek, M., Misiek, M., & Gozdz, S. (2019). Somatic mutations in BRCA1 and 2 in 201 unselected ovarian carcinoma samples – Single institution study. Polish Journal of Pathology, 70(2), 115126. https://doi.org/10.5114/PJP.2019.82905 CrossRefGoogle ScholarPubMed
Lee, J. S., Chong, H. S., Kim, L. H., Kim, J. O., Seo, D. W., Kim, Y. H., Chung, M. W., Han, S. Y., & Shin, H. D. (2013). Screening of genetic polymorphisms of CYP3A4 and CYP3A5 genes. The Korean Journal of Physiology & Pharmacology, 17, 479484. https://doi.org/10.4196/kjpp.2013.17.6.479 CrossRefGoogle ScholarPubMed
León-Cachón, R. B. R., Ascacio-Martínez, J. A., Gamino-Peña, M. E., Cerda-Flores, R. M., Meester, I., Gallardo-Blanco, H. L., Gómez-Silva, M., Piñeyro-Garza, E., & Barrera-Saldaña, H. A. (2016). A pharmacogenetic pilot study reveals MTHFR, DRD3, and MDR1 polymorphisms as biomarker candidates for slow atorvastatin metabolizers. BMC Cancer, 16, 74. https://doi.org/10.1186/s12885-016-2062-2 CrossRefGoogle ScholarPubMed
Licata, A., Giammanco, A., Minissale, M. G., Pagano, S., Petta, S., & Averna, M. (2018). Liver and statins: A critical appraisal of the evidence. Current Medicinal Chemistry, 25, 58355846. https://doi.org/10.2174/0929867 CrossRefGoogle ScholarPubMed
Link, E., Parish, S., Armitage, J., Bowman, L., Heath, S., Matsuda, F., Gut, I., Lathrop, M., & Collins, R. (2008). SLCO1B1 variants and statin-induced myopathy ¾ A genomewide study. New England Journal of Medicine, 359, 789799. https://doi.org/10.1056/NEJMoa0801936 Google ScholarPubMed
Liu, A., Wu, Q., Guo, J., Ares, I., Rodríguez, J. L., Martínez-Larrañaga, M. R., Yuan, Z., Anadón, A., Wang, X., & Martínez, M. A. (2019). Statins: Adverse reactions, oxidative stress and metabolic interactions. Pharmacology & Therapeutics, 195, 5484. https://doi.org/10.1016/j.pharmthera.2018.10.004 CrossRefGoogle ScholarPubMed
Maggo, S. D., Kennedy, M. A., & Clark, D. W. (2011). Clinical implications of pharmacogenetic variation on the effects of statins. Drug Safety, 34, 119. https://doi.org/10.2165/11584380-000000000-00000 CrossRefGoogle ScholarPubMed
Müller-Wieland, D., & Merkel, M. (2014). Lipid therapy for patients with coronary heart disease and diabetes. Current state and perspectives. Herz, 39, 299305. https://doi.org/10.1007/s00059-014-4083-4 CrossRefGoogle Scholar
Mussina, A. Z., Smagulova, G. A., Veklenko, G. V., Tleumagambetovad, B. B., Seitmaganbetovae, N. A., Zhaubatyrovaf, A. A., & Zhamaliyevag, L. M. (2019). Effect of an educational intervention on the number potential drug-drug interactions. Saudi Pharmaceutical Journal, 27, 717723. https://doi.org/10.1016/j.jsps.2019.04.007 CrossRefGoogle ScholarPubMed
Navarese, E. P., Kowalewski, M., Andreotti, F., van Wely, M., Camaro, C., Kolodziejczak, M., Gorny, B., Wirianta, J., Kubica, J., Kelm, M., de Boer, M.-J., & Suryapranata, H. (2014). Meta-analysis of time-related benefits of statin therapy in patients with acute coronary syndrome undergoing percutaneous coronary intervention. The American Journal of Cardiology, 113, 17531764. https://doi.org/10.1016/j.amjcard.2014.02.034 CrossRefGoogle ScholarPubMed
Nigmatova, V. G., Litus, I. A., Mukushkina, D. D., Miroshnik, T. N., Khanseitova, A. K., Omarbaeva, N. A., Talaeva, Sh. Zh., Balmukhanov, T. C., & Aitkhozhina, N. A. (2016). Variable polymorphic loci rs1128503 and rs1045642 of the multidrug resistance gene (MDR1) among patients diagnosed with breast cancer in the ethnic groups of Kazakhstan. Reports of the National Academy of Sciences of the Republic of Kazakhstan, 3, 116122.Google Scholar
Szczerba, E., Kaminska, K., Mierzwa, T., Misiek, M., Kowalewski, J., & Lewandowska, M. A. (2021). BRCA1/2 mutation detection in the tumor tissue from selected polish patients with breast cancer using next generation sequencing. GENES, 12(4), 519. https://doi.org/10.3390/genes12040519 CrossRefGoogle ScholarPubMed
Shek, A. B., Kurbanov, R. D., Abdullaeva, G. Zh., Nagay, A. V., Hoshimov, Sh. U., Nizamov, U. I., & Ziyaeva, A. V. (2017). Association of genetic polymorphism CYP3A5 and SLCO1B1 with muscle symptoms caused by simvastatin in patients with coronary artery disease, ethnic Uzbeks: Results of a case-control study. Siberian Medical Review, 2, 3541. https://doi.org/10.20333/2500136-2017-2-35-41 CrossRefGoogle Scholar
Turner, R. M., & Pirmohamed, M. (2014). Cardiovascular pharmacogenomics: expectations and practical benefits. Clinical Pharmacology & Therapeutics, 95, 281293. https://doi.org/10.1038/clpt.2013.234%2210.1038/clpt.2013.234 CrossRefGoogle ScholarPubMed
Vrablik, M., Zlatohlavek, L., Stulc, T., Prusikova, M., Schwarzova, L., Hubacek, J. A., & Ceska, R. (2014). Statin-associated myopathy: From genetic predisposition to clinical management. Physiological Research, 63, 327334. https://doi.org/10.33549/physiolres.932865 CrossRefGoogle ScholarPubMed