Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-18T13:59:58.477Z Has data issue: false hasContentIssue false

Association Between Rheumatoid Arthritis and Clonal Hematopoiesis: A Mendelian Randomization Study

Published online by Cambridge University Press:  03 June 2024

Jie Zhang
Affiliation:
Department of Pharmacy, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
Chun Zhou
Affiliation:
School of Pharmaceutical Sciences; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
Shaoxing Guan*
Affiliation:
NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
*
Corresponding author: Shaoxing Guan; Email: Guanshx6@mail.sysu.edu.cn
Get access

Abstract

Immunity activation and inflammation are the main characteristics of rheumatoid arthritis and clonal hematopoiesis. However, it remains unclear whether rheumatoid arthritis increase the risk of clonal hematopoiesis. Here, a Mendelian randomization (MR) analysis was conduct to explore the causal effects of rheumatoid arthritis on clonal hematopoiesis. Summary statistics data of rheumatoid arthritis (13,838 cases and 33,742 controls) and clonal hematopoiesis (10,203 cases and 173,918 controls) derived from a genomewide association study were selected to analyze. We selected inverse-variance weighted, MR-Egger, weighted median, simple mode, and weighted mode to evaluate the causal effect of rheumatoid arthritis on clonal hematopoiesis. The two-sample MR analysis suggested a strong causal relationship between rheumatoid arthritis and clonal hematopoiesis by inverse-variance weighted (OR = 1.002311673, 95% CI [1.000110757, 1.004517433], p = .039706) and weighted median (OR = 1.002311673, 95% CI [1.000110757, 1.004517433], p = .039518447) methods. No significant pleiotropy or heterogeneity was found in the sensitivity analysis. These results supported a potentially causal relationship between rheumatoid arthritis and clonal hematopoiesis, and the exposure of rheumatoid arthritis increased the risks of clonal hematopoiesis. Our findings highlight the importance of how chronic inflammation and immune activation induced rheumatoid arthritis enhances the risks of clonal hematopoiesis, and that early intervention with rheumatoid arthritis patients might reduce the clonal hematopoiesis risks in rheumatoid arthritis patients. Moreover, our study provides clues for prediction of risk factors and potential mechanisms of clonal hematopoiesis.

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Society for Twin Studies

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bae, S. C., & Lee, Y. H. (2018). Vitamin D level and risk of systemic lupus erythematosus and rheumatoid arthritis: A Mendelian randomization. Clinical Rheumatology, 37, 24152421. https://doi.org/10.1007/s10067-018-4152-9 CrossRefGoogle ScholarPubMed
Bowden, J., Davey Smith, G., Haycock, P. C., & Burgess, S. (2016). Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genetic Epidemiology, 40, 304314. https://doi.org/10.1002/gepi.21965 CrossRefGoogle ScholarPubMed
Burgess, S., & Labrecque, J. A. (2018). Mendelian randomization with a binary exposure variable: interpretation and presentation of causal estimates. European Journal of Epidemiology, 33, 947952. https://doi.org/10.1007/s10654-018-0424-6 CrossRefGoogle ScholarPubMed
Burgess, S., & Thompson, S. G. (2017). Interpreting findings from Mendelian randomization using the MR-Egger method. European Journal of Epidemiology, 32, 377389. https://doi.org/10.1007/s10654-017-0255-x CrossRefGoogle ScholarPubMed
Colmegna, I., Pryshchep, S., Oishi, H., Goronzy, J. J., & Weyand, C. M. (2012). Dampened ERK signaling in hematopoietic progenitor cells in rheumatoid arthritis. Clinical Immunology, 143, 7382. https://doi.org/10.1016/j.clim.2012.01.007 CrossRefGoogle ScholarPubMed
Ding, K., Jiang, W., Zhangwang, J., Li, J., & Lei, M. (2024). The effect of rheumatoid arthritis on features associated with sarcopenia: A Mendelian randomization study. Calcified Tissue International, 114, 286294. https://doi.org/10.1007/s00223-023-01178-w CrossRefGoogle ScholarPubMed
Evans, M. A., & Walsh, K. (2023). Clonal hematopoiesis, somatic mosaicism, and age-associated disease. Physiological Reviews, 103, 649716. https://doi.org/10.1152/physrev.00004.2022 CrossRefGoogle ScholarPubMed
Eyre, S., Bowes, J., Diogo, D., Lee, A., Barton, A., Martin, P., Zhernakova, A., Stahl, E., Viatte, S., McAllister, K., Amos, C. I., Padyukov, L., Toes, R. E., Huizinga, T. W., Wijmenga, C., Trynka, G., Franke, L., Westra, H. J., Alfredsson, L., …Worthington, J. (2012). High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nature Genetics, 44, 13361340. https://doi.org/10.1038/ng.2462 CrossRefGoogle ScholarPubMed
Genovese, G., Kähler, A. K., Handsaker, R. E., Lindberg, J., Rose, S. A., Bakhoum, S. F., Chambert, K., Mick, E., Neale, B. M., Fromer, M., Purcell, S. M., Svantesson, O., Landén, M., Höglund, M., Lehmann, S., Gabriel, S. B., Moran, J. L., Lander, E. S., Sullivan, P. F., …McCarroll, S. A. (2014). Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. New England Journal of Medicine, 371, 24772487. https://doi.org/10.1056/NEJMoa1409405 CrossRefGoogle ScholarPubMed
Jaiswal, S., & Ebert, B. L. (2019). Clonal hematopoiesis in human aging and disease. Science, 366, eaan4673. https://doi.org/10.1126/science.aan4673 CrossRefGoogle ScholarPubMed
Jaiswal, S., Fontanillas, P., Flannick, J., Manning, A., Grauman, P. V., Mar, B. G., Lindsley, R. C., Mermel, C. H., Burtt, N., Chavez, A., Higgins, J. M., Moltchanov, V., Kuo, F. C., Kluk, M. J., Henderson, B., Kinnunen, L., Koistinen, H. A., Ladenvall, C., Getz, G., …Ebert, B. L. (2014). Age-related clonal hematopoiesis associated with adverse outcomes. New England Journal of Medicine, 371, 24882498. https://doi.org/10.1056/NEJMoa1408617 CrossRefGoogle ScholarPubMed
Kar, S. P., Quiros, P. M., Gu, M., Jiang, T., Mitchell, J., Langdon, R., Iyer, V., Barcena, C., Vijayabaskar, M. S., Fabre, M. A., Carter, P., Petrovski, S., Burgess, S., & Vassiliou, G. S. (2022). Genome-wide analyses of 200,453 individuals yield new insights into the causes and consequences of clonal hematopoiesis. Nature Genetics, 54, 11551166. https://doi.org/10.1038/s41588-022-01121-z CrossRefGoogle Scholar
Lawlor, D. A., Harbord, R. M., Sterne, J. A., Timpson, N., & Davey Smith, G. (2008). Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Statistics in Medicine, 27, 11331163. https://doi.org/10.1002/sim.3034 CrossRefGoogle ScholarPubMed
Lee, S. G., Park, Y. E., Park, S. H., Kim, T. K., Choi, H. J., Lee, S. J., Kim, S. I., Lee, S. H., Kim, G. T., Lee, J. W., Lee, J. H., & Baek, S. H. (2012). Increased frequency of osteoporosis and BMD below the expected range for age among South Korean women with rheumatoid arthritis. International Journal of Rheumatic Diseases, 15, 289296. https://doi.org/10.1111/j.1756-185X.2012.01729.x CrossRefGoogle ScholarPubMed
Levin, M. G., Nakao, T., Zekavat, S. M., Koyama, S., Bick, A. G., Niroula, A., Ebert, B., Damrauer, S. M., & Natarajan, P. (2022). Genetics of smoking and risk of clonal hematopoiesis. Scientific Reports, 12, 7248. https://doi.org/10.1038/s41598-022-09604-z CrossRefGoogle ScholarPubMed
McInnes, I. B., & Schett, G. (2011). The pathogenesis of rheumatoid arthritis. New England Journal of Medicine, 365, 22052219. https://doi.org/10.1056/NEJMra1004965 CrossRefGoogle ScholarPubMed
Meng, Y., Tan, Z., Su, Y., Li, L., & Chen, C. (2023). Causal association between common rheumatic diseases and glaucoma: A Mendelian randomization study. Frontiers in Immunology, 14, 1227138. https://doi.org/10.3389/fimmu.2023.1227138 CrossRefGoogle ScholarPubMed
Nakad, R., & Schumacher, B. (2016). DNA damage response and immune defense: Links and mechanisms. Frontiers in Genetics, 7, 147. https://doi.org/10.3389/fgene.2016.00147 CrossRefGoogle ScholarPubMed
Pierce, B. L., & Burgess, S. (2013). Efficient design for Mendelian randomization studies: Subsample and 2-sample instrumental variable estimators. American Journal of Epidemiology, 178, 11771184. https://doi.org/10.1093/aje/kwt084 CrossRefGoogle ScholarPubMed
Qiu, S., Li, M., Jin, S., Lu, H., & Hu, Y. (2021). Rheumatoid arthritis and cardio-cerebrovascular disease: A Mendelian randomization study. Frontiers in Genetics, 12, 745224. https://doi.org/10.3389/fgene.2021.745224 CrossRefGoogle ScholarPubMed
Savola, P., Lundgren, S., Keränen, M. A. I., Almusa, H., Ellonen, P., Leirisalo-Repo, M., Kelkka, T., & Mustjoki, S. (2018). Clonal hematopoiesis in patients with rheumatoid arthritis. Blood Cancer Journal, 8, 69. https://doi.org/10.1038/s41408-018-0107-2 CrossRefGoogle ScholarPubMed
Scott, D. L., Wolfe, F., & Huizinga, T. W. (2010). Rheumatoid arthritis. Lancet, 376, 10941108. https://doi.org/10.1016/s0140-6736(10)60826-4 CrossRefGoogle ScholarPubMed
Shao, L. (2018). DNA damage response signals transduce stress from rheumatoid arthritis risk factors into T cell dysfunction. Frontiers in Immunology, 9, 3055. https://doi.org/10.3389/fimmu.2018.03055 CrossRefGoogle ScholarPubMed
Smolen, J. S., Aletaha, D., Koeller, M., Weisman, M. H., & Emery, P. (2007). New therapies for treatment of rheumatoid arthritis. Lancet, 370, 18611874. https://doi.org/10.1016/s0140-6736(07)60784-3 CrossRefGoogle ScholarPubMed
Smolen, J. S., Aletaha, D., & McInnes, I. B. (2016). Rheumatoid arthritis. Lancet, 388, 20232038. https://doi.org/10.1016/s0140-6736(16)30173-8 CrossRefGoogle ScholarPubMed
Tong, J. J., Xu, S. Q., Zong, H. X., Pan, M. J., Teng, Y. Z., & Xu, J. H. (2020). Prevalence and risk factors associated with vertebral osteoporotic fractures in patients with rheumatoid arthritis. Clinical Rheumatology, 39, 357364. https://doi.org/10.1007/s10067-019-04787-9 CrossRefGoogle ScholarPubMed
van der Woude, D., & van der Helm-van Mil, A. H. M. (2018). Update on the epidemiology, risk factors, and disease outcomes of rheumatoid arthritis. Best Practice & Research: Clinical Rheumatology, 32, 174187. https://doi.org/10.1016/j.berh.2018.10.005 CrossRefGoogle ScholarPubMed
Watson, C. J., Papula, A. L., Poon, G. Y. P., Wong, W. H., Young, A. L., Druley, T. E., Fisher, D. S., & Blundell, J. R. (2020). The evolutionary dynamics and fitness landscape of clonal hematopoiesis. Science, 367, 14491454. https://doi.org/10.1126/science.aay9333 CrossRefGoogle ScholarPubMed
Xue, A. L., Wu, S. Y., Jiang, L., Feng, A. M., Guo, H. F., & Zhao, P. (2017). Bone fracture risk in patients with rheumatoid arthritis: A meta-analysis. Medicine, 96, e6983. https://doi.org/10.1097/md.0000000000006983 CrossRefGoogle ScholarPubMed
Young, A. L., Challen, G. A., Birmann, B. M., & Druley, T. E. (2016). Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nature Communications, 7, 12484. https://doi.org/10.1038/ncomms12484 CrossRefGoogle ScholarPubMed
Zhang, D., Hu, Y., Guo, W., Song, Y., Yang, L., Yang, S., Ou, T., Liu, Y., & Zhang, Y. (2022). Mendelian randomization study reveals a causal relationship between rheumatoid arthritis and risk for pre-eclampsia. Frontiers in Immunology, 13, 1080980. https://doi.org/10.3389/fimmu.2022.1080980 CrossRefGoogle ScholarPubMed
Zhang, Y., Zhang, Y., He, P., Ge, F., Huo, Z., & Qiao, G. (2023). The genetic liability to rheumatoid arthritis may decrease hepatocellular carcinoma risk in East Asian population: a Mendelian randomization study. Arthritis Research & Therapy, 25, 49. https://doi.org/10.1186/s13075-023-03029-3 CrossRefGoogle ScholarPubMed
Zink, F., Stacey, S. N., Norddahl, G. L., Frigge, M. L., Magnusson, O. T., Jonsdottir, I., Thorgeirsson, T. E., Sigurdsson, A., Gudjonsson, S. A., Gudmundsson, J., Jonasson, J. G., Tryggvadottir, L., Jonsson, T., Helgason, A., Gylfason, A., Sulem, P., Rafnar, T., Thorsteinsdottir, U., Gudbjartsson, D. F., …Stefansson, K. (2017). Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood, 130, 742752. https://doi.org/10.1182/blood-2017-02-769869 CrossRefGoogle ScholarPubMed
Supplementary material: File

Zhang et al. supplementary material 1

Zhang et al. supplementary material
Download Zhang et al. supplementary material 1(File)
File 12.4 KB
Supplementary material: File

Zhang et al. supplementary material 2

Zhang et al. supplementary material
Download Zhang et al. supplementary material 2(File)
File 166 Bytes
Supplementary material: File

Zhang et al. supplementary material 3

Zhang et al. supplementary material
Download Zhang et al. supplementary material 3(File)
File 8.7 KB