Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-22T04:37:42.249Z Has data issue: false hasContentIssue false

Of Time and Taphonomy: Preservation in the Ediacaran

Published online by Cambridge University Press:  21 July 2017

Charlotte G. Kenchington
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK
Philip R. Wilby
Affiliation:
British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK
Get access

Abstract

The late Neoproterozoic witnessed a revolution in the history of life: the transition from a microbial world to the one known today. The enigmatic organisms of the Ediacaran hold the key to understanding the early evolution of metazoans and their ecology, and thus the basis of Phanerozoic life. Crucial to interpreting the information they divulge is a thorough understanding of their taphonomy: what is preserved, how it is preserved, and also what is not preserved. Fortunately, this Period is also recognized for its abundance of soft-tissue preservation, which is viewed through a wide variety of taphonomic windows. Some of these, such as pyritization and carbonaceous compression, are also present throughout the Phanerozoic, but the abundance and variety of moldic preservation of body fossils in siliciclastic settings is unique to the Ediacaran. In rare cases, one organism is preserved in several preservational styles which, in conjunction with an increased understanding of the taphonomic processes involved in each style, allow confident interpretations of aspects of the biology and ecology of the organisms preserved. Several groundbreaking advances in this field have been made since the 1990s, and have paved the way for increasingly thorough analyses and elegant interpretations.

Type
Research Article
Copyright
Copyright © 2014 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, E. P., Schiffbauer, J. D., and Xiao, S. 2011. Taphonomic study of Ediacaran organic-walled fossils confirms the importance of clay minerals and pyrite in Burgess Shale-type preservation. Geology, 39:643646. doi: 10.1130/G31969.1.CrossRefGoogle Scholar
Antcliffe, J. B., and Brasier, M. D. 2007. Charnia and sea pens are poles apart. Journal of the Geological Society, 164:4951. doi:10.1144/0016-76492006-080.CrossRefGoogle Scholar
Billings, E. 1872. Fossils in Huronian rocks. Canadian Naturalist and Quarterly Journal of Science, 6:478.Google Scholar
Boynton, H. E., and Ford, T. D. 1995. Ediacaran fossils from the Precambrian (Charnian Supergroup) of Charnwood Forest, Leicestershire, England. Mercian Geologist, 13:165182.Google Scholar
Boynton, H. E., and Ford, T. D. 1979. Pseudovendia charnwoodensis—a new Precambrian arthropod from Charnwood Forest, Leicestershire. Mercian Geologist, 7:175177.Google Scholar
Brasier, M. D., Antcliffe, J. B., and Liu, A. G. 2012. The architecture of Ediacaran Fronds. Palaeontology, 55:11051124. doi: 10.1111/j.1475-4983.2012.01164.x.CrossRefGoogle Scholar
Brasier, M. D., Liu, A. G., Menon, L., Matthews, J. J., McIlroy, D., and Wacey, D. 2013. Explaining the exceptional preservation of Ediacaran rangeomorphs from Spaniard's Bay, Newfoundland: A hydraulic model. Precambrian Research, 231:122135. doi: 10.1016/j.precamres.2013.03.013.Google Scholar
Briggs, D. E. G. 2003. The role of decay and mineralization in the preservation of soft-bodied fossils. Annual Review of Earth and Planetary Sciences, 31:275301. doi: 10.1146/annurev.earth.31.100901.144746.CrossRefGoogle Scholar
Bruton, D. L. 1991. Beach and laboratory experiments with the jellyfish Aurelia and remarks on some fossil “‘medusoid”’ traces, p. 125129. In Simonetta, A. M., and Conway Morris, S. (eds.), The Early Evolution of Metazoa and the Significance of Problematic Taxa, Cambridge University Press, Cambridge.Google Scholar
Butterfield, N. J., Balthasar, U., and Wilson, L. A. 2007. Fossil diagenesis in the Burgess Shale. Palaeontology, 50:537543. doi: 10.1111/j.1475-4983.2007.00656.X.CrossRefGoogle Scholar
Cai, Y., Schiffbauer, J. D., Hua, H., and Xiao, S. 2012. Preservational modes in the Ediacaran Gaojiashan Lagerstätte: Pyritization, aluminosilicification, and carbonaceous compression. Palaeogeography, Palaeoclimatology, Palaeoecology, 326–328:109117. doi: 10.1016/j.palaeo.2012.02.009.CrossRefGoogle Scholar
Callow, R. H. T., and Brasier, M. D. 2009a. A solution to Darwin's dilemma of 1859: exceptional preservation in Salter's material from the late Ediacaran Longmyndian Supergroup, England. Journal of the Geological Society, 166:14. doi:10.1144/0016-76492008-095.CrossRefGoogle Scholar
Callow, R. H. T., and Brasier, M. D. 2009b. Remarkable preservation of microbial mats in Neoproterozoic siliciclastic settings: Implications for Ediacaran taphonomic models. Earth-Science Reviews, 96:207219. doi: 10.1016/j.earscirev.2009.07.002.CrossRefGoogle Scholar
Canfield, D. E., Poulton, S. W., Knoll, A. H., Narbonne, G. M., Ross, G., Goldberg, T., and Strauss, H. 2008. Ferruginous conditions dominated later Neoproterozoic deep-water chemistry. Science, 321:949952. doi: 10.2307/20144603.CrossRefGoogle ScholarPubMed
Chen, Z., Zhou, C., Meyer, M., Xiang, K., Schiffbauer, J. D., Yuan, X., and Xiao, S. 2013. Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors. Precambrian Research, 224:690701.CrossRefGoogle Scholar
Clapham, M. E., and Narbonne, G. M. 2002. Ediacaran epifaunal tiering. Geology, 30:627630.2.0.CO;2>CrossRefGoogle Scholar
Clapham, M. E., Narbonne, G. M., and Gehling, J. G. 2003. Paleoecology of the oldest known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland. Paleobiology, 29:527544.Google Scholar
Darroch, S. A. F., Laflamme, M., and Clapham, M. E. 2013. Population structure of the oldest known macroscopic communities from Mistaken Point, Newfoundland. Paleobiology, 39:591608. doi: 10.1666/12051.CrossRefGoogle Scholar
Darroch, S. A. F., Laflamme, M., Schiffbauer, J. D., and Briggs, D. E. G. 2012. Experimental formation of a microbial death mask. PALAIOS, 27:293303. doi: 10.2110/palo.2011.p11-059r.Google Scholar
Droser, M. L., Gehling, J. G., and Jensen, S. R. 2006. Assemblage palaeoecology of the Ediacara biota: The unabridged edition? Palaeogeography, Palaeoclimatology, Palaeoecology, 232:131147. doi: 10.1016/j.palaeo.2005.12.015.CrossRefGoogle Scholar
DziK, J. 2003. Anatomical information content in the Ediacaran fossils and their possible zoological affinities. Integrative and Comparative Biology, 43:114126. doi: 10.2307/3884846.CrossRefGoogle ScholarPubMed
Dzik, J. 2002. Possible ctenophoran affinities of the Precambrian “sea-pen” Rangea . Journal of Morphology, 252:315334. doi: 10.1002/jmor.1108.CrossRefGoogle ScholarPubMed
Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D., and Peterson, K. J. 2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science, 334:10911097. doi: 10.1126/science.1206375.CrossRefGoogle ScholarPubMed
Farrell, U. C. 2014. Pyritization of soft tissues in the fossil record: an overview, p. 3557. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.Google Scholar
Fedonkin, M. A., Gehling, J. G., Grey, K., Narbonne, G. M., and Vickers-Rich, P. 2007. The Rise of Animals: Evolution and Diversification of the Kingdom Animalia. John Hopkins University Press, Baltimore, MD.Google Scholar
Fedonkin, M. A., and Waggoner, B. M. 1997. The Late Precambrian fossil Kimberella is a mollusc like bilaterian organism. Nature, 388:868871.CrossRefGoogle Scholar
Flude, L. I., and Narbonne, G. M. 2008. Taphonomy and ontogeny of a multibranched Ediacaran fossil: Bradgatia from the Avalon Peninsula of Newfoundland. Canadian Journal of Earth Sciences, 45:10951109. doi: 10.1139/E08-057.CrossRefGoogle Scholar
Ford, T. D. 1958. Pre-Cambrian Fossils from Charnwood Forest. Proceedings of the Yorkshire Geological and Polytechnic Society, 31:211217. doi:10.1144/pygs.31.3.211.CrossRefGoogle Scholar
Gaines, R. R., Kennedy, M. J., and Droser, M. L. 2005. A new hypothesis for organic preservation of Burgess Shale taxa in the middle Cambrian Wheeler Formation, House Range, Utah. Palaeogeography, Palaeoclimatology, Palaeoecology, 220:193205. doi: 10.1016/j.palaeo.2004.07.034.CrossRefGoogle Scholar
Gehling, J. G. 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. PALAIOS, 14:4057. doi: 10.2307/3515360.CrossRefGoogle Scholar
Gehling, J. G. 1991. The case for Ediacaran fossil roots to the metazoan tree. Geological Society of India Memoir, 20:181224.Google Scholar
Gehling, J. G., and Droser, M. L. 2013. How well do fossil assemblages of the Ediacara Biota tell time? Geology, 41:447450. doi:10.1130/G33881.1.CrossRefGoogle Scholar
Gehling, J. G., Droser, M. L., Jensen, S. R., and Runnegar, B. N. 2005. Ediacaran organisms: relating form and function, p. 4367. In Briggs, D. E. G. (ed.), Evolving Form and Function: Fossils and Development: Proceedings of a Symposium Honoring Adolf Seilacher for his Contributions to Paleontology, in Celebration of His 80th Birthday. Peabody Museum of Natural History, Yale University, New Haven.Google Scholar
Gehling, J. G., Narbonne, G. M., and Anderson, M. M. 2000. The first named Ediacaran body fossil, Aspidella terranovica . Palaeontology, 43:427456. doi:10.1111/j.0031-0239.2000.00134.x.Google Scholar
Glaessner, M. F. 1979. Precambrian, p. A79118. In Robinson, R. A. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Part A. Geological Society of America and University Kansas Press, Boulder, CO and Lawrence, KS.Google Scholar
Glaessner, M. F., and Wade, M. 1966. The Late Precambrian fossils from Ediacara, South Australia. Palaeontology, 9:599628.Google Scholar
Glass, J. B., Axler, R. P., Chandra, S., and Goldman, C. R. 2012. Molybdenum limitation of microbial nitrogen assimilation in aquatic ecosystems and pure cultures. Frontiers in Microbiology, 3:331. doi: 10.3389/fmicb.2012.00331.CrossRefGoogle ScholarPubMed
Grant, S. W. 1990. Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. American Journal of Science, 290–A:261294.Google Scholar
Grazhdankin, D. 2004. Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution. Paleobiology, 30:203221.2.0.CO;2>CrossRefGoogle Scholar
Grazhdankin, D. V., Balthasar, U., Nagovitsin, K. E., and Kochnev, B. B. 2008. Carbonate-hosted Avalon-type fossils in Arctic Siberia. Geology, 36:803806. doi: 10.1130/G24946A.1.CrossRefGoogle Scholar
Grazhdankin, D., and Gerdes, G. 2007. Ediacaran microbial colonies. Lethaia, 40:201210. doi:10.1111/j.1502-3931.2007.00025.x.CrossRefGoogle Scholar
Grotzinger, J. P., Waiters, W. A., and Knoll, A. H. 2000. Calcified metazoans in thrombolitestromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology, 26:334359. doi: 10.2307/2666114.Google Scholar
Hua, H., Pratt, B. R., and Zhang, L. 2003. Borings in Cloudina shells: complex predator-prey dynamics in the terminal Neoproterozoic. PALAIOS, 18:454459.2.0.CO;2>CrossRefGoogle Scholar
Hofmann, H. J., Hill, J., and King, A. F. 1979. Late Precambrian microfossils, southeastern Newfoundland. Geological Survey of Canada Current Research Part B, 79-1B:8398.Google Scholar
Knoll, A. H., Walter, M. R., Narbonne, G. M., and Christie-Blick, N. 2004. A new Period for the geologic time scale. Science, 305:621622. doi: 10.1126/science.1098803.CrossRefGoogle ScholarPubMed
Laflamme, M., Darroch, S. A. F., Tweedt, S. M., Peterson, K. J., and Erwin, D. H. 2013. The end of the Ediacara biota: Extinction, biotic replacement, or Cheshire Cat? Gondwana Research, 23:558573.doi:10.1016/j.gr.2012.11.004.CrossRefGoogle Scholar
Laflamme, M., and Narbonne, G. M. 2008. Ediacaran fronds. Palaeogeography, Palaeoclimatology, Palaeoecology, 258:162179. doi: 10.1016/j.palaeo.2007.05.020.CrossRefGoogle Scholar
Laflamme, M., Narbonne, G. M., and Anderson, M. M. 2004. Morphometric analysis of the Ediacaran frond Charniodiscus from the Mistaken Point Formation, Newfoundland. Journal of Paleontology, 78:827837.2.0.CO;2>CrossRefGoogle Scholar
Laflamme, M., Narbonne, G. M., Greentree, C., and Anderson, M. M. 2007. Morphology and taphonomy of an Ediacaran frond: Charnia from the Avalon Peninsula of Newfoundland. Geological Society of London Special Publications, 286:237257. doi:10.1144/SP286.17.CrossRefGoogle Scholar
Laflamme, M., Schiffbauer, J. D., and Narbonne, G. M. 2012. Deep-water microbially induced sedimentary structures (MISS) in deep time, in the Ediacaran fossil Ivesheadia , p. 111123. In Noffke, N. and Chaftez, H. (eds.), Microbial Mats in Siliciclastic Depositional Systems Through Time. SEPM Special Publication 101, SEPM, Tulsa, OK.Google Scholar
Laflamme, M., Schiffbauer, J. D., Narbonne, G. M., and Briggs, D. E. G. 2011. Microbial biofilms and the preservation of the Ediacara biota. Lethaia, 44:203213. doi:10.1111/j.1502-3931.2010.00235.x.CrossRefGoogle Scholar
Laflamme, M., Xiao, S., and Kowalewski, M. 2009. Osmotrophy in modular Ediacara organisms. Proceedings of the National Academy of Sciences of the United States of America, 106:1443814443.doi:10.1073/pnas.0904836106.CrossRefGoogle ScholarPubMed
Lan, Z.-W., and Chen, Z.-Q. 2012. Exceptionally preserved microbially induced sedimentary structures from the Ediacaran post-glacial successions in the Kimberley region, northwestern Australia. Precambrian Research, 200–203:125. doi: 10.1016/j.precamres.2012.01.006.CrossRefGoogle Scholar
Liu, A. G., McIlroy, D., Antcliffe, J. B., and Brasier, M. D. 2011. Effaced preservation in the Ediacara biota and its implications for the early macrofossil record. Palaeontology, 54:607630. doi:10.1111/j.l475-4983.2010.01024.x.CrossRefGoogle Scholar
Liu, A. G., McIlroy, D., and Brasier, M. D. 2010. First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point Formation, Newfoundland. Geology, 38:123126. doi:10.1130/G30368.1.CrossRefGoogle Scholar
Liu, A. G., McIlroy, D., Matthews, J. J., and Brasier, M. D. 2012. A new assemblage of juvenile Ediacaran fronds from the Drook Formation, Newfoundland. Journal of the Geological Society, 169:395403. doi: 10.1144/0016-76492011-094.CrossRefGoogle Scholar
Liu, A. G., McIlroy, D., Matthews, J. J., and Brasier, M. D. 2013. Exploring an Ediacaran “nursery”: growth, ecology and evolution in a rangeomorph palaeocommunity. Geology Today, 29:2326. doi:10.1111/j.1365-2451.2013.00860.x.CrossRefGoogle Scholar
Locatelli, E. R. 2014. The exceptional preservation of plant fossils: a review of taphonomic pathways and biases in the fossil record, p. 237257. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.Google Scholar
MacGabhann, B. A. 2007. Discoidal fossils of the Ediacaran biota: a review of current understanding. Geological Society of London, Special Publications, 286:297313. doi: 10.1144/SP286.21.CrossRefGoogle Scholar
MacGabhann, B. A. 2014. There is no such thing as the “Ediacara Biota.” Geoscience Frontiers, 5:5362. doi: 10.1016/j.gsf.2013.08.001.CrossRefGoogle Scholar
MacGabhann, B. A., and Murray, J. 2010. Nonmineralised discoidal fossils from the Ordovician Bardahessiagh Formation, Co. Tyrone, Ireland. Irish Journal of Earth Sciences, 28:112. doi: 10.3318/IJES.2010.28.1.CrossRefGoogle Scholar
MacGabhann, B. A., Murray, J., and Nicholas, C. 2007. Ediacaria booleyi: weeded from the Garden of Ediacara? Geological Society of London Special Publications, 286:277295. doi: 10.1144/SP286.20.CrossRefGoogle Scholar
Mapstone, N. B., and McIlroy, D. 2006. Ediacaran fossil preservation: Taphonomy and diagenesis of a discoid biota from the Amadeus Basin, central Australia. Precambrian Research, 149:126148. doi: 10.1016/j.precamres.2006.05.007.CrossRefGoogle Scholar
McIlroy, D., Brasier, M. D., and Lang, A. S. 2009. Smothering of microbial mats by macrobiota: implications for the Ediacara biota. Journal of the Geological Society, 166:11171121. doi: 10.1144/0016-76492009-073.CrossRefGoogle Scholar
Meyer, M., Elliott, D., Schiffbauer, J. D., Hall, M., Hoffman, K. H., Schneider, G., Vickers-Rich, P., and Xiao, S. 2014a. Taphonomy of the Ediacaran fossil Pteridinium simplex preserved three-dimensionally in mass flow deposits, Nama Group, Namibia. Journal of Paleontology, 88:240252.CrossRefGoogle Scholar
Meyer, M., Elliott, D., Wood, A. D., Polys, N. F., Colbert, M., Maisano, J. A., Vickers-Rich, P., Hall, M., Hoffman, K. H., Schneider, G., and Xiao, S. 2014b. Three-dimensional microCT analysis of the Ediacara fossil Pteridinium simplex sheds new light on its ecology and phylogenetic affinity. Precambrian Research, 249:7987. doi: 10.1016/j.precamres.2014.04.013.CrossRefGoogle Scholar
Meyer, M., Schiffbauer, J. D., Xiao, S., Cai, Y., and Hua, H. 2012. Taphonomy of the late Ediacaran enigmatic ribbon-like fossil Shaanxilithes . PALAIOS, 27:354372.Google Scholar
Meyer, M., Xiao, S., Gill, B. C., Schiffbauer, J. D., Chen, Z., Zhou, C., and Yuan, C. 2014c. Interactions between Ediacaran animals and microbial mats: insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 396:6274.Google Scholar
Narbonne, G. M. 2004. Modular construction of early Ediacaran complex life forms. Science, 305:11411144.CrossRefGoogle ScholarPubMed
Narbonne, G. M. 2005. The Ediacara Biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences, 33:421442. doi: 10.1146/annurev.earth.33.092203.122519.Google Scholar
Narbonne, G. M., Dalrymple, R. W., and Gehling, J. G. 2001. Neoproterozoic fossils and environments of the Avalon Peninsula, Newfoundland. Geological Association of Canada-Mineralogical Association of Canada Joint Annual Meeting Guidebook: St. Johns 2001, Trip B5.Google Scholar
Narbonne, G. M., Laflamme, M., Greentree, C., and Trusler, P. 2009. Reconstructing a lost world: Ediacaran rangeomorphs from Spaniard's Bay, Newfoundland. Journal of Paleontology, 83:503523. doi: 10.2307/29739123.Google Scholar
Narbonne, G. M., Xiao, S., Shields, G. A., and Gehling, J. G. 2012. Chapter 18—The Ediacaran Period, p. 413435. In Gradstein, F. M., Ogg, J. G., Schmitz, M. D., and Ogg, G. M. (eds.), The Geologic Time Scale. Elsevier, Boston.CrossRefGoogle Scholar
Noffke, N., Gerdes, G., Klenke, T., and Krumbein, W. E. 2001. Microbially induced sedimentary structures: A new category within the classification of primary sedimentary structures. Journal of Sedimentary Research, 71:649656.CrossRefGoogle Scholar
Noffke, N., Knoll, A. H., and Grotzinger, J. P. 2002. Sedimentary controls on the formation and preservation of microbial mats in siliciclastic deposits: A case study from the Upper Neoproterozoic Nama Group, Namibia. PALAIOS, 17:533544. doi: 10.2307/3515692.2.0.CO;2>CrossRefGoogle Scholar
Norris, R. D. 1989. Cnidarian taphonomy and affinities of the Ediacara biota. Lethaia, 22:381393. doi:10.1111/j.1502-3931.1989.tb01439.x.CrossRefGoogle Scholar
Orr, P. J., Briggs, D. E. G., and Kearns, S. L. 1998. Cambrian Burgess Shale animals replicated in clay minerals. Science, 281:11731175. doi: 10.2307/2895499.Google Scholar
Page, A., Gabbott, S. E., Wilby, P. R., and Zalasiewicz, J. A. 2008. Ubiquitous Burgess Shale-style “clay templates” in low-grade metamorphic mudrocks. Geology, 36:855858. doi: 10.1130/G24991A.1.CrossRefGoogle Scholar
Penny, A. M., Wood, R., Curtis, A., Bowyer, F., Tostevin, R., and Hoffman, K.-H. 2014. Ediacaran metazoan reefs from the Nama Group, Namibia. Science, 344:15041506. doi: 10.1126/science.1253393.CrossRefGoogle ScholarPubMed
Peterson, K. J., Waggoner, B., and Hagadorn, J. W. 2003. A fungal analog for Newfoundland Ediacaran fossils? Integrative and Comparative Biology, 43:127136.CrossRefGoogle ScholarPubMed
Raff, R. A., and Raff, E. C. 2014. The role of biology in the fossilization of embryos and other soft-bodied organisms: Microbial biofilms and Lagerstätten. p. 83100. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.Google Scholar
Retallack, G. J. 1994. Were the Ediacaran fossils lichens? Paleobiology, 20:523544. doi: 10.2307/2401233.Google Scholar
Runnegar, B. N., and Fedonkin, M. A. 1992. Proterozoic metazoan body fossils, p. 369387. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere, A Multidisciplinary Study. Cambridge University Press, Cambridge.Google Scholar
Sansom, R. S. 2014. Experimental decay of soft tissues, p. 217236. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.Google Scholar
Schiffbauer, J. D., Wallace, A. F., Broce, J., and Xiao, S. 2014. Exceptional fossil conservation through phosphatization, p. 5982. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.Google Scholar
Scott, C., Lyons, T. W., Bekker, A., Shen, Y., Poulton, S. W., Chu, X., and Anbar, A. D. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452:456459. doi: 10.1038/nature06811.CrossRefGoogle ScholarPubMed
Seilacher, A. 1984. Late Precambrian and Early Cambrian Metazoa: preservational or real extinctions?, p. 159168. In Holland, H. D. and Trendall, A. F. (eds.), Patterns of Change in Earth Evolution. Report of the Dahlem Workshop, Berlin May 1–6, 1983. Springer-Verlag, Berlin.Google Scholar
Seilacher, A. 1992. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. Journal of the Geological Society, 149:607613. doi: 10.1144/gsjgs.149.4.0607.Google Scholar
Seilacher, A. 1999. Biomat-related lifestyles in the Precambrian. PALAIOS, 14:8693. doi: 10.2307/3515363.Google Scholar
Seilacher, A., Grazhdankin, D., and Legouta, A. 2003. Ediacaran biota: The dawn of animal life in the shadow of giant protists. Paleontological Research, 7:4354. doi: 10.2517/prpsj.7.43.CrossRefGoogle Scholar
Sperling, E. A., Frieder, C. A., Raman, A. V., Girguis, P. R., Levin, L. A., and Knoll, A. H. 2013. Oxygen, ecology, and the Cambrian radiation of animals. Proceedings of the National Academy of Sciences of the United States of America, 110:1344613451. doi: 10.1073/pnas.1312778110.CrossRefGoogle ScholarPubMed
Sperling, E. A., Peterson, K. J., and Laflamme, M. 2011. Rangeomorphs, Thectardis (Porifera?), and dissolved organic carbon in the Ediacaran oceans. Geobiology, 9:2433. doi: 10.1111/j.1472-4669.2010.00259.x.Google Scholar
Sperling, E. A., and Vinther, J. 2010. A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes. Evolution & Development, 12:201209. doi: 10.1111/j.1525-142X.2010.00404.x.CrossRefGoogle ScholarPubMed
Sprigg, R. C. 1947. Early Cambrian(?) jellyfishes from the Flinders Ranges, South Australia. Transactions of The Royal Society of South Australia, 71:212224.Google Scholar
Sprigg, R. C. 1949. Early Cambrian “jellyfishes” of Ediacara, South Australia and Mount John, Kimberley District, Western Australia. Transactions of The Royal Society of South Australia, 73:7299.Google Scholar
Steiner, M., and Reitner, J. 2001. Evidence of organic structures in Ediacara-type fossils and associated microbial mats. Geology, 29:11191122. doi: 10.1130/0091-7613(2001)029 <1119:EOOSIE>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Sun, W. 1986. Late Precambrian pennatulids (sea pens) from the eastern Yangtze Gorge, China. Paracharnia gen. nov. Precambrian Research, 31:361375. doi: 10.1016/0301-9268(86)90040-9.Google Scholar
Tarhan, L. G., Droser, M. L., and Gehling, J. G. 2010. Taphonomic controls on Ediacaran diversity: uncovering the holdfast origin of morphologically variable enigmatic structures. PALAIOS, 25:823830. doi: 10.2110/palo.2010.p10-074r.CrossRefGoogle Scholar
Vickers-rich, P., Ivantsov, A. Y., Trusler, P. W., Narbonne, G. M., Hall, M., Wilson, S. A., Greentree, C., Fedonkin, M. A., Elliott, D. A., Hoffmann, K. H., and Schneider, G. I. C. 2013. Reconstructing Rangea: New discoveries from the Ediacaran of Southern Namibia. Journal of Paleontology, 87:115. doi: 10.1666/12-074R.1.Google Scholar
Wade, M. 1969. Medusae from uppermost Precambrian or Cambrian sandstones, central Australia. Palaeontology, 12:351365.Google Scholar
Waggoner, B. 2003. The Ediacaran biotas in space and time. Integrative and Comparative Biology, 43:104113.CrossRefGoogle ScholarPubMed
Wilby, P. R., Carney, J. N., and Howe, M. P. A. 2011. A rich Ediacaran assemblage from eastern Avalonia: Evidence of early widespread diversity in the deep ocean. Geology, 39:655658. doi: 10.1130/G31890.1.Google Scholar
Xiao, S., Droser, M., Gehling, J. G., Hughes, I. V., Wan, B., Chen, Z., and Yuan, X. 2013. Affirming life aquatic for the Ediacara biota in China and Australia. Geology, 41:10951098. doi: 10.1130/G34691.1.CrossRefGoogle Scholar
Xiao, S., and Laflamme, M. 2009. On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends in Ecology & Evolution, 24:3140. doi: 10.1016/j.tree.2008.07.015.CrossRefGoogle ScholarPubMed
Xiao, S., Shen, B., Zhou, C., Xie, G., and Yuan, X. 2005. A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan. Proceedings of the National Academy of Sciences of the United States of America, 102:1022710232. doi: 10.1073/pnas.0502176102.Google Scholar
Xiao, S., Yuan, X., Steiner, M., and Knoll, A. H. 2002. Macroscopic carbonaceous compressions in a terminal Proterozoic shale: A systematic reassessment of the Miaohe Biota, South China. Journal of Paleontology, 76:347376. doi: 10.2307/1307146.2.0.CO;2>CrossRefGoogle Scholar
Yuan, X., Chen, Z., Xiao, S., Zhou, C., and Hua, H. 2011. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature, 470:390393. doi: 10.1038/nature09810.Google Scholar
Zhang, X., Hua, H., and Reitner, J. 2006. A new type of Precambrian megascopic fossils: the Jinxian biota from northeastern China. Facies, 52:169181. doi: 10.1007/s10347-005-0027-z.CrossRefGoogle Scholar
Zhu, M., Gehling, J. G., Xiao, S., Zhao, Y., and Droser, M. L. 2008. Eight-armed Ediacara fossil preserved in contrasting taphonomic windows from China and Australia. Geology, 36:867870. doi: 10.1130/G25203A.1.CrossRefGoogle Scholar