Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-11T13:12:40.528Z Has data issue: false hasContentIssue false

The early Cambrian experiment in reef-building by metazoans

Published online by Cambridge University Press:  21 July 2017

Stephen M. Rowland
Affiliation:
Department of Geoscience, University of Nevada, Las Vegas, NV 89154-4010 USA
Melissa Hicks
Affiliation:
Department of Geoscience, University of Nevada, Las Vegas, NV 89154-4010 USA
Get access

Abstract

A consortium dominated by archaeocyaths and calcified microorganisms (calcimicrobes) constructed the first metazoan reefs during an eleven-million-year interval of the Early Cambrian. However, archaeocyaths were not the first metazoan reef dwellers; the weakly calcified organism Namacalathus, and the more heavily biomineralized organism Namapoikia, occupied microbial reef environments during the late Neoproterozoic, but they were not involved in reef construction. Throughout the late nineteenth century, and during most of the twentieth century, the biological affinities of archaeocyaths were unsettled, which caused paleobiologists to avoid including them in analyses of the Cambrian fauna. However, in the late twentieth century the discovery of living, aspiculate sponges led to a consensus among archaeocyathan workers that these fossils represent an extinct class of aspiculate, calcareous sponges. The majority of archaeocyathan-calcimicrobial reefs are relatively small, lenticular mounds, typically about a meter thick and a few meters in diameter, but the archaeocyathan-calcimicrobial consortium also constructed massive, ecologically zoned, wave-resistant, framework reefs. The Great Siberian Cambrian Reef Complex is 200-300 km wide and stretches for 1500 km across northern Siberia. A consensus has not yet been found among Cambrian reef workers concerning photosymbiosis, which is such an important aspect of the ecology of modern coralgal reefs. Two extinction events hit during the Early Cambrian, the second of which is associated with a eustatic sea-level drop. The attendant marine regression eliminated reefs, and the archaeocyathan-calcimicrobial reef community disappeared. While the disappearance of reefs at this time is perfectly understandable, it is nevertheless surprising that the metazoan-calcimicrobe reef-building consortium was not able to recover within a few million years. Approximately forty million years passed æ from the end of the Early Cambrian to the beginning of the Middle Ordovician æ before metazoans finally returned to reef-building. We present seven hypotheses to explain this metazoan-reef-free window. The testing of these hypotheses will, in part, be the challenge of the next phase of research on Early Cambrian reefs.

Type
Research Article
Copyright
Copyright © 2004 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Awramik, S. M., and Sprinkle, J. 1999. Proterozoic stromatolites: the first marine evolutionary biota. Historical Biology, 13:241253.CrossRefGoogle Scholar
Babcock, L. E., Zhang, W., and Leslie, S. A. 2001. The Chengjiang biota: record of the Early Cambrian diversification of life and clues to exceptional preservation of fossil. GSA Today, 11(2):49.2.0.CO;2>CrossRefGoogle Scholar
Bambach, R. K. 1983. Ecospace utilization and guilds in marine communities through the Phanerozoic, p. 719746. In Tavesz, M. J. and McCall, P. L., (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Press, New York.CrossRefGoogle Scholar
Bambach, R. K. 1985. Classes and adaptive variety: the ecology of diversication in marine faunas through the Phanerozoic, p. 191253. In Valentine, J. W., (ed.), Phanerozoic Diversity Patterns. Princeton University Press and Pacific Division, American Association for the Advancement of Science, Princeton, N.J. and San Francisco.Google Scholar
Bayfield, H. W. 1845. On the junction of the transition and primary rocks of Canada and Labrador. Quarterly Journal Geological Society of London, 1:450459.CrossRefGoogle Scholar
Bedford, R, and Bedford, J. 1939. Development and classification of Archaeos (Pleospongia). Kyancutta Museum of South Australia, Memoir 6, p. 6782, plates xlii-lii.Google Scholar
Berner, R. A. 1990. Atmospheric carbon dioxide over Phanerozoic time. Science, 249:13821386.CrossRefGoogle ScholarPubMed
Berner, R. A. 1991. A model for atmospheric CO2 over Phanerozoic time. American Journal of Science, 291:339376.CrossRefGoogle Scholar
Berner, R. A. 1994. Geocarb II: a revised model of atmospheric CO2 over Phanerozoic Time. American Journal of Science, 294:5691.CrossRefGoogle Scholar
Billings, E., 1861. New species of Lower Silurian fossils. Geological Survey of Canada, Montreal, 24 p.CrossRefGoogle Scholar
Billings, E., 1865. Paleozoic Fossils, V. 1. Geological Survey of Canada. Dawson Brothers, Montreal, 426 p.Google Scholar
Bornemann, J. G. 1886. Die Versteinerungen des cambrischen Schichtensystems der Insel Sardinien nebst vergleichenden Untersuchungen _ber analoge Vorkomnisse aus andem Ländern. Abr. 1, Acta Ksl. Leopold.- Carol. Deutschen. Akad. Naturforsch., 51(1):148.Google Scholar
Bottjer, D. J. and Ausich, W. I. 1986. Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology, 12:400420.CrossRefGoogle Scholar
Brasier, M. D. 1976. Early Cambrian intergrowths of archaeocyathids, Renalcis, and pseudostromatolites from South Australia. Palaeontology, 19:223245.Google Scholar
Brasier, M. D. 1982. Sea-level changes, facies changes and the late Precambrian_Early Cambrian evolutionary explosion. Precambrian Research, 17:105123.CrossRefGoogle Scholar
Brasier, M. D., Cowie, J. W., and Taylor, M. 1994. Decision on the Precambrian-Cambrian boundary stratotype. Episodes, 17:38.CrossRefGoogle Scholar
Brennan, S. T., Lowenstein, T. K., and Horita, J. 2004. Seawater chemistry and the advent of biocalcification. Geology, 32:473476.CrossRefGoogle Scholar
Clarke, A. 1993. Temperature and extinction in the sea: a physiologist's view. Paleobiology, 19:499518.CrossRefGoogle Scholar
Copper, P. 1974. Structure and development of Early Paleozoic Reefs. Proceedings of the Second International Coral Reef Symposium 1. Great Barrier Reef Committee, Brisbane, 1:365386.Google Scholar
Copper, P. 1994. Ancient reef ecosystem expansion and collapse. Coral Reefs, 13:311.CrossRefGoogle Scholar
Copper, P. 2001. Evolution, radiation, and extinctions in Proterozoic to mid-Paleozoic reefs, p. 89120. In Stanley, G. D. Jr. (ed.), The History and Sedimentology of Ancient Reef Systems. Kluwer Academic, New York.CrossRefGoogle Scholar
Cowen, R. 1983. Algal symbiosis and its recognition in the fossil record, p. 431478. In Tavesz, M. J. S. and McCall, P. L. (eds.), Biotic interactions in Recent and fossil benthic communities. Plenum Press, New York.CrossRefGoogle Scholar
Cowen, R. 1988. The role of algal symbiosis in reefs through time. Palaios,3:221227.CrossRefGoogle Scholar
Crimes, T. P., and Droser, M. L. 1992. Trace fossils and bioturbation: the other fossil Record. Annual Review of Ecology and Systematics, 23:339360.CrossRefGoogle Scholar
Debrenne, F. 1964. Archaeocyatha — Contribution à l' étude des faunes Cambriennes du Maroc, de Sardaigne et de France. Notes et Memoires du Service Géologique du Moroc, 179, 265 p.Google Scholar
Debrenne, F. 1991. Extinction of the Archaeocyatha. Historical Biology, 5:95106.CrossRefGoogle Scholar
Debrenne, F. 1992. Diversification of Archaeocyatha, p. 425443. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa. Plenum, New York.CrossRefGoogle Scholar
Debrenne, F., and Vacelet, J. 1984. Archaeocyatha: Is the sponge model consistent with their structural organization? Paleontographica Americana, 54:358369.Google Scholar
Debrenne, F. and Zhuravlev, A. Yu. 1992. Irregular Archaeocyaths. CNRS Editions, Paris, 289 p.Google Scholar
Debrenne, F. and Zhuravlev, A. Yu. 1994. Archaeocyathan affinities: How deep can we go into the systematic affinities of an extinct group? p. 312. In van Soest, R. W. M., Van Kempen, T. M. G., and Braekman, J. C. (eds.), Sponges in Time and Space. A. A. Balkema, Rotterdam.Google Scholar
Debrenne, F., Rozanov, A. Yu., and Webers, G. F. 1984. Upper Cambrian Archaeocyatha from Antarctica. Geological Magazine, 121:291299.CrossRefGoogle Scholar
Debrenne, F., Gangloff, R. A., and Lafuste, J. G. 1987. Tabulaconus Handfield: Microstrucrure and its implication in the taxonomy of primitive corals. Journal of Paleontology, 61:19.CrossRefGoogle Scholar
Debrenne, F., Gandin, A., and Gangloff, R. A. 2000. Analyse sedimentologique et paleontologie de calcaires organogenes du Cambrien Inferieur de Battle Mountain (Nevada, U.S.A.). Annales de Paleontologie, 76:73119.Google Scholar
Debrenne, F., Zhuravlev, A. Yu., and Kruse, P. D. 2002. Class Archaeocyatha Bornemann, 1884, p. 15391699. In Hooper, J. N. A. and Van Soest, R. W. M. (eds.), Systema Porifera: A Guide to the Classification of Sponges. Kluwer Academic, New York.CrossRefGoogle Scholar
Flugel, E. and Kiessling, W. 2002. A new look at ancient reefs, p. 310. In Kiessling, W. and Flügel, E. (eds.), Phanerozoic Reef Patterns. SEPM Special Publication 72, Tulsa, Oklahoma.CrossRefGoogle Scholar
Gradstein, F. M., Ogg, J. G., and Smith, A. G. (eds.). In press. A geologic time scale. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Griffin, K. M. 1989. Microbial reefs on a carbonate ramp: a case study from western North America with a global perspective, p. 101110. In Cooper, J. D. (ed.), Cavalcade of Carbonates. Pacific Section SEPM Book 61.Google Scholar
Grotzinger, J. P., Wesley, A. W., and Knoll, A. H. 2000. Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology, 26:334359.2.0.CO;2>CrossRefGoogle Scholar
Hallock, P., and Schlager, W. 1986. Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios, 1:389398.CrossRefGoogle Scholar
Hallock, P., Hine, A. C., Vargo, G. A., Elrod, J. A., and Jaap, W. C. 1988. Platforms of the Nicaraguan Rise: examples of the sensitivity of carbonate sedimentation to excess trophic resources. Geology, 16:11041107.2.3.CO;2>CrossRefGoogle Scholar
Hamdi, B., Rozanov, A. Yu., and Zhuravlev, A. Yu. 1995. Latest Middle Cambrian metazoan reef from northern Iran. Geological Magazine, 132:367373 CrossRefGoogle Scholar
Hicks, M. 2001. Paleoecology of Upper Harkless archaeocyathan reefs in Esmeralda County, Nevada. , University of Nevada, Las Vegas, 157 p.Google Scholar
Hill, D. 1964. The Phylum Archaeocyatha. Biological Reviews, 39:232258.CrossRefGoogle Scholar
Hill, D. 1965. Archaeocyatha from Antarctica and a review of the phylum. Trans-Antarctic Expedition Scientific Report No. 10. Trans-Antarctic Expedition Committee, London, 151 p.Google Scholar
Hill, D. 1972. Treatise on Invertebrate Paleontology, Part E (revised), Archaeocyatha. Geological Society of America and University of Kansas Press, Lawrence, 158 p.Google Scholar
Hinde, G. J. 1889. On Archaeocyathus Billings, and on other genera allied to or associated with it, from the Cambrian strata of North America, Spain, Sardinia, and Scotland. Geological Society of London, Quarterly Journal, 45:125148.CrossRefGoogle Scholar
Ingmanson, D. E., and Wallace, W. J. 1995. Oceanography: an Introduction (fifth edition). Belmont, Wadsworth, 495 p.Google Scholar
James, N. P. and Gravestock, D. I. 1990. Lower Cambrian shelf and shelf- margin buildups, Flinders Ranges, South Australia. Sedimentology, 37:455480.CrossRefGoogle Scholar
James, N. P., and Klappa, C. F. 1983. Petrogenesis of Early Cambrian reef limestones, Labrador, Canada. Journal of Sedimentary Petrology, 53:10511096.Google Scholar
James, N. P. and Kobluk, D. R. 1978. Lower Cambrian patch reefs and associated Sediments: southern Labrador, Canada. Sedimentology, 25:135.CrossRefGoogle Scholar
Karhu, J., and Epstein, S. 1986. The implication of the oxygen isotope records in coexisting cherts and phosphates. Geochimica et Cosmochimica Acta, 30:17451756.CrossRefGoogle Scholar
Kennard, J. M., and James, N. P. 1986. Thrombolites and stromatolites: two distinct types of microbial structures. Palaios, 1:492503.CrossRefGoogle Scholar
Kiessling, W. and Fl_Gel, E. 2002. Paleoreefsæa database on Phanerozoic reefs, p. 7792. In Kiessling, W. and Flügel, E. (eds.) Phanerozoic Reef Patterns. SEPM Special Publication 72, Tulsa, Oklahoma.CrossRefGoogle Scholar
Kleypas, J. A., Buddemeier, R. W., Archer, D., Gattuso, J. P., Langdon, C., and Opodyk, B. N. 1999. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science, 284:118120.CrossRefGoogle ScholarPubMed
Kobluk, D. R. and James, N. P. 1979. Cavity-dwelling organisms in Lower Cambrian patch reefs from southern Labrador. Lethaia, 12:193218.CrossRefGoogle Scholar
Kruse, P. D. 1990. Are archaeocyaths sponges, or are sponges archaeocyaths? p. 310323. In Jago, J. B. and Moore, R. S., (eds.), The Evolution of a Late Precambian-Early Palaeozoic Rift Complex: The Adelaide Geosyncline. Geological Society of Australia Special Publication, 16.Google Scholar
Kruse, P. D., and Debrenne, F. 1989. Review of archaeocyath microstructure. Memoirs of the Association of Australasian Palaeontologists, 8:133141.Google Scholar
Kruse, P. D., Zhuravlev, A. Yu., and James, N. P. 1995. Primordial metazoan-Calcimirobial reefs: Tommotian (Early Cambrian) of the Siberian Platform. Palaios, 10:291321.CrossRefGoogle Scholar
Lafuste, J., Debrenne, F., Gandin, A., and Gravestock, D. 1991. The oldest tabulate coral and the associated Archaeocyatha, Lower Cambrian Flinders Ranges, South Australia. Geobios, 24:697718.CrossRefGoogle Scholar
Landing, E. 1994. Precambrian-Cambrian boundary global stratotype ratified and a new perspective on Cambrian time. Geology, 22:179182.2.3.CO;2>CrossRefGoogle Scholar
Meek, F. B. 1868a. Preliminary notice of a remarkable new genus of corals, probably typical of a new family, forwarded for study by Prof. J. D. Whitney, from the Silurian rocks of Nevada. American Journal of Science, 2nd Series, 45:6264.Google Scholar
Meek, F. B. 1868b. Note on Ethmophyllum and Archaeocyathus . American Journal of Science, 2d Series, 46:144.Google Scholar
Meglitsky, N. G. 1851. Geognostiche Bemerken aus einer Reise in Ost-Sibirien im Jahre 1850, p. 118162. In Verh. Russ. Vaiserl. Miner. Ges., St. Petersburg. Google Scholar
Nitecki, M. H., and Debrenne, F. 1979. The nature of radiocyathids and their relationship to receptaculitids. Géobios, 12(1):527.CrossRefGoogle Scholar
Nitecki, M. H. and Toomey, D. F. 1979. Nature and classification of receptaculitids. Bull. Cent. Rech. Explor.-Prod. Elf-Aquitaine, 3:725732.Google Scholar
Nitecki, M. H., Zhuravleva, I. T., Myagkov, Ye. I., and Toomey, D. F. 1981. Similarity of Soanites bimuralis to Archaeocyatha and receptaculitids. Paleontological Journal, 1981(1):15.Google Scholar
Nitecki, M. H., Mutvei, H., and Nitecki, D. V. 1999. Receptaculitids — a phylogenetic debate on a problematic fossil taxon. Kluwer/Plenum, New York, 241 p.Google Scholar
Okulitch, V. J. 1955. Archaeocyatha, p. E1E20. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part E, Archaeocyatha and Porifera. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Okulitch, V. J. 1935. Cyathospongia — a new class of Porifera to include the Archaeocyathinae. Royal Society of Canada, Treatise, 3rd series, section 4, v. 29:75106, 2 plates.Google Scholar
Okulitch, V. J. 1955. Archaeocyatha, p. E1E20. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part E, Archaeocyatha and Porifera. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Okulitch, V. J. and De Laubenfels, M. W. 1953. The systematic position of Archaeocyatha. Journal of Paleontology, 27:481485.Google Scholar
Ópik, A. A. 1975. Cymbric Vale fauna of New South Wales and Early Cambrian biostratigraphy. Australia Department of Mines and Energy, Bureau of Mineral Resources, Geology and Geophysics Bulletin, 159, 78 p.Google Scholar
Padan, E., Cohen, Andy. 1982. Anoxygenic photosynthesis, p. 215235. In Carr, N. G. and Whitton, B. A. (eds.), The Biology of Cyanobacteria. University of California Press, Berkeley, California.Google Scholar
Palmer, A. R. 1981. Subdivision of the Sauk Sequence, p. 160162. In Taylor, M. E. (ed.), Short Papers for the Second International Symposium on the Cambrian System. U.S. Geological Survey, Open-File Report 81-743.Google Scholar
Palmer, A.R. and James, N.P. 1979. The Hawke Bay event: A Circum-Iapetus regression near the Lower Middle Cambrian boundary, p. 1518. In Wones, D.R. (ed.), The Caledonides in the U.S.A. I.G.C.P Project 27: Caledonides Orogen. Department of Geological Sciences, Virginia Polytechnic Institute and StateUniversity, Blacksburg, Virginia.Google Scholar
Pratt, B. R., Spincer, B. R., Wood, R. A., and Zhuravlev, A. Yu. 2001. Ecology and evolution of Cambrian reefs, pp. 254274. In Zhuravlev, A. Yu. and Riding, R. (eds.), The Ecology of the Cambrian Radiation. Columbia University Press, New York.Google Scholar
Raymond, P. E. 1931. The systematic position of the Archaeocyathinae. Museum of Comparative Zoology, Bulletin, 55:172177.Google Scholar
Rees, M. N., Pratt, B. R., and Rowell, A. J. 1989. Early Cambrian reefs, reef complexes, and associated lithofacies of the Shackleton Limestone, Transantarctic Mountains. Sedimentology, 36:341361.CrossRefGoogle Scholar
Riding, R. 1982. Calcified cyanophytes and the Precambrian-Cambrian transition. Naturwissenschaften, 69:498499.CrossRefGoogle Scholar
Riding, R. 1992. Temporal variation in calcification in marine cyanobacteria. Geological Society of London Jounal, 149:979989.CrossRefGoogle Scholar
Riding, R. 2000. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47:179214.CrossRefGoogle Scholar
Riding, R. 2001. Calcified algae and bacteria, p. 445473. In Zhuravlev, A. Yu. and Riding, R. (eds.), The Ecology of the Cambrian Radiation. Columbia University Press, New York.Google Scholar
Riding, R. 2002. Structure and composition of organic reefs and carbonate mud mounds: concepts and categories. Earth-Science Reviews, 58:163231.CrossRefGoogle Scholar
Riding, R., and Zhuravlev, A. Yu. 1995. Structure and diversity of oldest sponge-microbe reefs: Lower Cambrian, Aldan River, Siberia. Geology, 23:649652.2.3.CO;2>CrossRefGoogle Scholar
Rigby, J. K., and Gangloff, R. A. 1987. Phylum Archaeocyatha, p. 107115. In Boardman, R. S., Cheetham, A. H., and Rowell, A. J. (eds.), Fossil Invertebrates. Blackwell Science, Cambridge, Massachusetts.Google Scholar
Rowland, S. M. 1984. Were there framework reefs in the Cambrian? Geology, 12:181183.2.0.CO;2>CrossRefGoogle Scholar
Rowland, S. M. 2001. Archaeocyaths æ a history of phylogenetic interpretation. Journal of Paleontology, 75:10651078.2.0.CO;2>CrossRefGoogle Scholar
Rowland, S. M. and Gangloff, R. A. 1988. Structure and paleoecology of Lower Cambrian reefs. Palaios, 3:111135.CrossRefGoogle Scholar
Rowland, S. M. and Shapiro, R. S. 2002. Reef patterns and environmental influences in the Cambrian and Earliest Ordovician, pp. 95128. In Kiessling, W. and Flügel, E. (eds.), Phanerozoic Reef Patterns. SEPM Special Publication 72, Tulsa, Oklahoma.CrossRefGoogle Scholar
Rowland, S. M., Luchinina, V. A., Korovnikov, I. V., Sipin, D. P., Tarletskov, A.I., and Fedoseev, A. V. 1998. Biostratigraphy of the Vendian-Cambrian Sukharikha River section, northwestern Siberian Platform. Canadian Journal of Earth Science, 35:339352.CrossRefGoogle Scholar
Runnegar, B., Pojeta, J. Jr., Taylor, M. E., and Collins, D. 1979. New species of the Cambrian and Ordovician chitons Matthevia and Chelodes from Wisconsin and Queensland: evidence for the early history of polyplacophoranmollusks. Journal of Paleontology, 53:13741394.Google Scholar
Sandberg, P. A. 1983. An oscillating trend in Phanerozoic non-skeletal carbonate Mineralogy. Nature, 305:1922.CrossRefGoogle Scholar
Savarese, M. 1992. Functional analysis of archaeocyathan skeletal morphology and its paleobiological implications. Paleobiology, 18:464480.CrossRefGoogle Scholar
Savarese, M., Mount, J. F., Sorauf, J. E., and Bucklin, L. 1993. Paleobiologic and paleoenvironmental context of coral-bearing Early Cambrian reefs: implications for Phanerozoic reef development. Geology, 21:917920.2.3.CO;2>CrossRefGoogle Scholar
Scrutton, C. T. 1990. Reefs, p. 5255. In Briggs, D. E. G. and Crowther, P.R. (eds.), Paleobiology: A Synthesis. Blackwell Scientific Publications, Oxford.Google Scholar
Scrutton, C. T. 1997. The Palaeozoic corals, I: origins and relationships. Proceedings of the Yorkshire Geological Society, 51:177208.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1979. A kinetic model of Phanerozoic taxonomic diversity II. Early Phanerozoic families and multiple equilibria. Paleobiology, 5:222251.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1981. The uniqueness of the Cambrian fauna, pp. 203207. In Taylor, M. E. (ed.), Short Papers for the Second International Symposium on the Cambrian System. U.S. Geological Survey Open-File Report 81-743.Google Scholar
Sepkoski, J. J. Jr., and Miller, A. I. 1985. Evolutionary faunas and the distribution of Paleozoic marine communities in space and time, p. 153190. In Valentine, J. W. (ed.). Phanerozoic Diversity Patterns. Princeton University Press and Pacific Division, American Association for the Advancement of Science, Princeton, N.J. and San Francisco.Google Scholar
Seslavinsky, K. B. and Maidanskaya, I. D. 2001. Ecology and evolution of Cambrian reefs, p. 254274. In Zhuravlev, A. Yu. and Riding, R. (eds.), The Ecology of the Cambrian Radiation. Columbia University Press, New York.Google Scholar
Shapiro, R. S. 1995. Mollusc-stromatolite/thrombolite synecology in the Late Cambrian-Early Ordovician of the Great Basin — a preliminary report, p. 1011. California Paleontology Conference, Abstracts and Fieldtrip Guidebook, Bishop, California.Google Scholar
Sheehan, P. M. 1985. Reefs are not so different — they follow the evolutionary pattern of level-bottom communities. Geology, 13: 4649.2.0.CO;2>CrossRefGoogle Scholar
Sorauf, J. E., and Savarese, M. 1995. A Lower Cambrian coral from South Australia. Palaeontology, 38:757770.Google Scholar
Stanley, G. D. Jr. 2001. Introduction to reef ecosystems and their evolution, p. 140. In Stanley, G. D. Jr. (ed.), The History and Sedimentology of Ancient Reef Systems. Kluwer Academic, New York.CrossRefGoogle Scholar
Stanley, S. M., and Hardie, L. A. 1998. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 144:319.CrossRefGoogle Scholar
Stanley, S. M., and Hardie, L. A. 1999. Hypercalcification: paleontology links plate tectonics and geochemistry to sedimentology. GSA Today, 9:17.Google Scholar
Stinchcomb, B. L. and Darrough, G. 1995. Some molluscan problematica from the Upper Cambrian-Lower Ordovician of the Ozark uplift. Journal of Paleontology, 69:5265.CrossRefGoogle Scholar
Talent, J. A. 1988. Organic reef-building: episodes of extinction and symbiosis? Senckenbergiana lethaea, 69:315368.Google Scholar
Taylor, T. G. 1910. The Archaeocyathinae from the Cambrian of South Australia with an account of the morphology and affinities of the whole class. Memoirs of the Royal Society of South Australia, Vol. II, Part 2:55188.Google Scholar
Ting, T. H. 1937. Revision der Archaeocyathinen. Neues Jahrbuch f_r Geologie, Mineralogie, Paläontologie, Abt. B., 78:327379.Google Scholar
Toll, E. Von. 1899. Beiträge zur Kenntniss des Sibirschen Cambrium. Imperial Academy of Science, St. Petersburg, Memoir, 8(10): 157.Google Scholar
Vacelet, J. 1977. Une nouvelle relique de Sécondaire, un représentant actuel des eponges fossiles Sphinctozoaires. Comptes rendus de l'Académie des Sciences, 285:509511.Google Scholar
Vacelet, J. 1979. Description et affinités d'une eponge sphinctozoaire actuelle, p. 483493. In Levi, C. and Boury-Esnault, N. (eds.), Biologie des Spongiaires. Colloques des Sciences, Paris, 291.Google Scholar
Valentine, J. W. 1973. Evolutionary paleoecology of the marine biosphere. Prentice-Hall, Englewood Cliffs, New Jersey, 511 p.Google Scholar
Vologdin, A. G. 1937. Arkheotsiaty i resul'taty ikh izucheniya v SSSR (kratkaya svodka). [Archaeocyaths and their study in the USSR (a brief review)]. Problemy Paleontologii, v. 2-3, p. 453481 (in Russian), p. 481–500 (in English). Moscow, Paleontologicheskaya Laboratoriya, Moskovskoro Gosudarstvennoro Universiteta.Google Scholar
Vologdin, A. G. 1962. Tip Archaeocyatha: Arkheotsiaty (Phylum Archaeocyatha: Archaeocyaths), p. 89139. In Sokolov, B. S. (ed.), Osnovy Paleontologii: Gubki, Arkheotsiaty, Kishechnopolostnye, Chervi (Principles of Paleontology: Sponges, Archaeocyaths, Coelenterates, Worms), USSR Academy of Science, Moscow.Google Scholar
Vologdin, A. G. and Zhuravleva, I. T. 1947. Morfologiya pravil'nikh arkheotsiat (Morphology of regular archaeocyaths), p. 227228. In Referaty nauchna-issledovatel'skikh rabot za 1945 (Abstracts of scientific research for 1945), Academy of Sciences of the USSR, Division of Biological Sciences, Moscow and Leningrad.Google Scholar
Walcott, C. D. 1894. The fauna of the Lower Cambrian or Olenellus zone, p. 599602. In U.S. Geological Survey, 10th Annual Report.Google Scholar
Walcott, C. D. 1886. Cambrian faunas of North America. U.S. Geological Survey Bulletin, 30:7289.Google Scholar
Walker, K. R. and Alberstadt, L. P. 1975. Ecological succession as an aspect of structure in fossil communities. Paleobiology, 1:238257.CrossRefGoogle Scholar
Wood, R. 1990. Reef-building sponges. American Scientist, 78:224235.Google Scholar
Wood, R. 1993. Nutrients, predation and the history of reef-building. Palaios, 8:526543.CrossRefGoogle Scholar
Wood, R. 1995. The changing biology of reef-building. Palaios, 10:517529.CrossRefGoogle Scholar
Wood, R. 1998. The ecological evolution of reefs. Annual Review of Ecology and Systematics, 29:179206.CrossRefGoogle Scholar
Wood, R. 1999. Reef Evolution. Oxford University Press, New York, 414 p.CrossRefGoogle Scholar
Wood, R., Evans, K. R., and Zhuravlev, A. Yu. 1992. A new post-early Cambrian archaeocyath from Antarctica. Geological Magazine, 129:491495.CrossRefGoogle Scholar
Wood, R., Grotzinger, J. P., and Dickson, J. A. D. 2002. Proterozoic modular biomineralized metazoan from the Nama Group, Namibia. Science, 296: 23832386.CrossRefGoogle ScholarPubMed
Zhuravlev, A. Yu. 1986. Evolution of archaeocyaths and paleobiogeography of the Early Cambrian. Geological Magazine, 123:377385.CrossRefGoogle Scholar
Zhuravlev, A. Yu. 1989. Poriferan aspects of archaeocyathan skeletal function. Memoir of Association of Australasian Palaeontologists, 8:387399.Google Scholar
Zhuravlev, A. Yu. 1996. Reef ecosystem recovery from the Early Cambrian extinction, p. 7986. In Hart, M. B. (ed.), Biotic Recovery from Mass Extinction Events. Geological Society (London) Special Publication, 102.Google Scholar
Zhuravlev, A. Yu. 1999. A new coral from the Lower Cambrian of Siberia. Paleontological Journal, 33:502508.Google Scholar
Zhuravlev, A. Yu. 2001a. Cambrian reef ecosystems, pp. 121157. In Stanley, G. D. Jr. (ed.), The History and Sedimentology of Ancient Reef Systems. Kluwer Academic, New York.CrossRefGoogle Scholar
Zhuravlev, A. Yu. 2001b. Biotic diversity and structure during the Neoproterozoic-Ordovician transition., pp. 173199. In Zhuravlev, A. Yu. and Riding, R. (eds.), The Ecology of the Cambrian Radiation. Columbia University Press, New York.Google Scholar
Zhuravlev, A. Yu. and Debrenne, F., 1996. Pattern of evolution of Cambrian benthic communities; environments of carbonate sedimentation. Rivista Italiana di Paleontologia e Stratigrafia, 102:333340 Google Scholar
Zhuravlev, A. Yu. and Nitecki, M. N. 1985. On the comparative morphology of the archaeocyathids and receptaculitids. Paleontological Journal, 1985(4): 134136.Google Scholar
Zhuravlev, A. Yu. and Wood, R. 1995. Lower Cambrian reefal cryptic communities. Palaeontology, 38:443470.Google Scholar
Zhuravlev, A. Yu. and Wood, R. 1996. Anoxia as the cause of the mid-Early Cambrian (Botomian) extinction event. Geology, 24:311314 2.3.CO;2>CrossRefGoogle Scholar
Zhuravleva, I. T. 1966. Rannekembriyskiye organogennyye postroyki iz territorii Sibirskoy Pltaformy, p. 6184. In Organizm i sreda v geologicheskom proshlom. Izdat. Nauka, Moscow [in Russian].Google Scholar
Zhuravleva, I. T., and Myagkova, Ye. I. 1972. Archaeata — novaya gruppa organizmov paleozoya (Archaeata — a new group of Paleozoic organisms). International Geological Congress, Session XXIV, Nauka, Moscow, p. 714. (In Russian with English abstract) Google Scholar