Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-06T19:56:12.044Z Has data issue: false hasContentIssue false

Analysis of Molecular Biomarkers Covalently Bound Within Neoproterozoic Sedimentary Kerogen

Published online by Cambridge University Press:  21 July 2017

G. D. Love
Affiliation:
Department of Earth Sciences, University of California, Riverside, CA 92521
C. Stalvies
Affiliation:
School of Civil Engineering and Geosciences, University of Newcastle upon Tyne, NE1 7RU, UK
E. Grosjean
Affiliation:
Petroleum and Marine Division, Geoscience Australia, Canberra, ACT 2601, Australia
W. Meredith
Affiliation:
School of Chemical, Environmental and Mining Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
C. E. Snape
Affiliation:
School of Chemical, Environmental and Mining Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK
Get access

Abstract

Catalytic hydropyrolysis (HyPy) is a powerful analytical technique for fragmenting macromolecular organic matter, such as kerogen (insoluble sedimentary organic matter), and releasing covalently-bound molecular constituents including branched and cyclic biomarker hydrocarbons. Here we illustrate our molecular approach to paleobiology with lipid biomarker data collected from rock bitumens and kerogens hosted within sedimentary units of the Neoproterozoic Huqf Supergroup, South Oman Salt Basin, Sultanate of Oman. We emphasize that parallel analyses of free and bound biomarker pools affords more confidence that we have correctly identified syngenetic compounds. One enigmatic class of compounds that is prominent in many late Proterozoic and Cambrian sedimentary rocks and oils, including from the Huqf Supergroup, is a series of C14-C30 mid-chain methylalkanes which were originally denoted X-peaks. Despite their abundance in the Precambrian rock record, little is known about the organisms responsible for their biosynthesis. Here we propose a possible origin of X-peak methylalkanes from colorless sulfur bacteria (a very heterogeneous group of chemolithotrophic γ-proteobacteria). In modern marine settings, these bacteria are abundant mat formers wherever a sedimentary sulfide-rich horizon intersects the seafloor producing a steep geochemical redox gradient. This condition may have been met more commonly on shallow marine shelves in late Neoproterozoic basins and these benthic mats may have acted as environmental buffers consuming hydrogen sulfide. If our hypothesis is correct, proliferation of sulfide-oxidizing benthic microbial mats, commencing in the late Cryogenian in South Oman Salt Basin, implies unique and specific benthic conditions during the evolution of the earliest metazoans.

Type
Research Article
Copyright
Copyright © by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, P. A. 2007. The Huqf Supergroup of Oman: basin development and context for Neoproterozoic glaciations Earth Science Reviews, 84:139185.Google Scholar
Amthor, J. E., Grotzinger, J. P., Schroder, S., Bowring, S. A., Ramezani, J., Martin, M. W., and Matter, A. 2003. Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology, 31:431434.Google Scholar
Amthor, J. E., Ramseyer, K., Faulkner, T., and Lucas, P. 2005. Stratigraphy and sedimentology of a chert reservoir at the Precambrian-Cambrian Boundary: the Al Shomou Silicilyte, South Oman Salt Basin. GeoArabia, 10:89122.Google Scholar
Bailey, J. V., Joye, S. B., Kalanentra, K. M., Flood, B. E., and Corsetti, F. A. 2007. Evidence of giant sulphur bacteria in Neoproterozoic phosphorites. Nature, 445:198201.Google Scholar
Bazhenova, O. K., and Areffiev, O. A. 1996. Geochemical peculiarities of Pre-Cambrian source rocks in the East European Platform. Organic Geochemistry, 25:341351.CrossRefGoogle Scholar
Birch, A. J. 1967. Biosynthesis of polyketides and related compounds. Science, 156, 202206.Google Scholar
Bishop, A. N., Love, G. D., Snape, C. E., and Farrimond, P. 1998. Release of kerogen-bound hopanoids by hydropyrolysis. Organic Geochemistry, 29:9891001.Google Scholar
Bowden, S. A., Farrimond, P., Snape, C. E., and Love, G. D. 2006. Compositional differences in biomarker constituents of the hydrocarbon, resin, asphaltene and kerogen fractions: An example from the Jet Rock (Yorkshire, UK). Organic Geochemistry, 37:369383.CrossRefGoogle Scholar
Bowring, S.A., Grotzinger, J. P., Condon, D. J., Ramezani, J., and Newall, M. 2007. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman: American Journal of Science, 307:10971145.Google Scholar
Brocks, J. J., Logan, G. A., Buick, R., and Summons, R. E. 1999. Archean molecular fossils and the early rise of eukaryotes. Science, 285:10331036.Google Scholar
Brocks, J. J., and Summons, R. E. 2003. Sedimentary hydrocarbons, biomarkers for early life. 64103 p. In Holland, H.D. (ed.), Treatise in Geochemistry, Volume 8, Elsevier.Google Scholar
Brocks, J. J., Love, G. D., Snape, C. E., Logan, G. A., Summons, R. E., and Buick, R. 2003. Release of bound aromatic hydrocarbons from late Archean and Mesoproterozoic kerogens via hydropyrolysis. Geochimica et Cosmochimica Acta, 67:15211530.CrossRefGoogle Scholar
Brocks, J. J., Love, G. D., Summons, R. E., Knoll, A. H., Logan, G. A., and Bowden, S. A. 2005. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature, 437:866870.CrossRefGoogle Scholar
Canfield, D. E., and Teske, A. 1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature, 382:127132.Google Scholar
Canfield, D. E., Poulton, S. W., and Narbonne, G. M. 2007. Late-Neoproterozoic deepocean oxygenation and the rise of animal life. Science, 315:9295.Google Scholar
Dowling, N. J. E., Widdel, F., and White, D. C. 1986. Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulfate reducers and other sulfide-forming bacteria. Journal of General Microbiology, 132:18151825.Google Scholar
Droser, M. L., Jensen, S., and Gehling, J. A. 2002. Trace fossils and substrates of the terminal Proterozoic-Cambrian transition: Implications for the record of early bilaterians and sediment mixing. Proceedings of the National Academy of The United States of America, 97:65746578.Google Scholar
Dutkiewicz, A., Volk, H., Ridley, J., and George, S. C. 2004. Geochemistry of oil in fluid inclusions in a middle Proterozoic igneous intrusion: implications for the source of hydrocarbons in crystalline rocks. Organic Geochemistry, 35:937957.CrossRefGoogle Scholar
Farrimond, P., Love, G. D., Bishop, A. N., Innes, H. E., Watson, D. F., and Snape, C. E. 2003. Evidence for the rapid incorporation of hopanoids into kerogen. Geochimica et Cosmochimica Acta, 67:13831394.Google Scholar
Fike, D. A., Grotzinger, J. P., Pratt, L. M., and Summons, R. E. 2006. Oxidation of the Ediacaran ocean. Nature, 444:744747.Google Scholar
Fortey, R. 2000. Olenid trilobites: The oldest known chemoautotrophic symbionts? Proceedings of the National Academy of The United States of America, 97:65746578.CrossRefGoogle ScholarPubMed
Fowler, M. G., and Douglas, A. G., 1987. Saturated hydrocarbon biomarkers in oils of late Precambrian age from Eastern Siberia. Organic Geochemistry, 11:201213.CrossRefGoogle Scholar
Gelin, F., Volkman, J. K., Largeau, C., Derenne, S., Sinninghe Damsté, J. S., and De Leeuw, J. W. 1999. Distribution of aliphatic, nonhydrolyzable biopolymers in marine microalgae. Organic Geochemistry, 30:147159.Google Scholar
Gelpi, E., Schneider, H., Mann, J., and Oro, J. 1970. Hydrocarbons of geochemical significance in microscopic algae. Phytochemistry, 9:603612.Google Scholar
George, S. C., Volk, H., Dutkiewicz, A., Ridley, J., and Buick, R. 2007. Preservation of hydrocarbons and biomarkers in oil trapped inside fluid inclusions for >2 billion years. Geochimica et Cosmochimica Acta 72:844870.Google Scholar
Grantham, P. J., Lijmbach, G. W. M., Posthuma, J., Clarke, M. W. H., and Willink, R. J. 1988. Origins of crude oils in Oman. Journal of Petroleum Geology, 11:6180.Google Scholar
Grosjean, E., and Logan, G. A. 2007. Incorporation of organic contaminants into geochemical samples and an assessment of potential sources: Examples from Geoscience Australia marine Survey S282. Organic Geochemistry, 38:853869.Google Scholar
Grosjean, E., Love, G. D., Stalvies, C., Fike, D. A., and Summons, R. E. In press. New oilsource correlations in the South Oman Salt Basin. Organic Geochemistry.Google Scholar
Grotzinger, J. P., Al-Siyabi, A. H., Alhashimi, R. A., and Cozzi, A. 2002. New model for tectonic evolution of Neoproterozoic-Cambrian Huqf Supergroup basins, Oman. GeoArabia, 7:241.Google Scholar
Hayes, J. M., Strauss, H. M., and Kaufman, A. J. 1999. The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chemical Geology, 161:103125.CrossRefGoogle Scholar
Hinrichs, K.-U., Summons, R. E., Orphan, V., Sylva, S. P., and Hayes, J. M. 2000. Molecular and isotopic analysis of anaerobic methane communities in marine sediments. Organic Geochemistry, 31:16851701.Google Scholar
Hold, I. M., Schouten, S., Jellema, J., and Sinninghe Damsté, J. S. 1999. Origin of free and bound mid-chain methyl alkanes in oils, bitumens and kerogens of the marine, Infracambrian Huqf Formation (Oman). Organic Geochemistry, 30:14111428.Google Scholar
Hurtgen, M.T., Halverson, G. P., Arthur, M. A., and Hoffman, P. F. 2006. Sulfur cycling in the aftermath of a 635-Ma snowball glaciation: Evidence for a syn-glacial sulfidic deep ocean. Earth and Planetary Science Letters, 245:551570.Google Scholar
Johnston, D. T., Wing, B. A., Farquhar, J., Kaufman, A. J., Strauss, H., Lyons, T. W., Kah, L. C., and Canfield, D. E. 2005. Active microbial sulfur disproportionation in the Mesoproterozoic. Science, 310:14771479.Google Scholar
Johnston, D. T., Poulton, S. W., Fralick, P. W., Wing, B. A., Canfield, D. C., and Farquhar, J. 2006. Evolution of the oceanic sulfur cycle at the end of the Paleoproterozoic. Geochimica et Cosmochimica Acta, 70:57235739.Google Scholar
Johnston, D. T., Farquhar, J., Summons, R. E., Shen, Y., Kaufman, A. J., Masterson, A. L., and Canfield, D. E. In press. Sulfur isotope biogeochemistry of the Proterozoic McArthur Basin. Geochimica et Cosmochimica Acta. Google Scholar
Kaufman, A. J., Johnston, D. T., Farquhar, J., Masterson, A. L., Lyons, T. W., Bates, S., Anbar, A. D., Arnold, G. L., Garvin, J., and Buick, R. 2007. Late Archean biospheric oxygenation and atmospheric evolution. Science, 317:19001903.CrossRefGoogle ScholarPubMed
Kenig, F., Sinninghe Damsté, J. S., Kock-Van Dalen, A. C., Rijpstra, W. I. C., Huc, A. Y., and De Leeuw, J. W. 1995. Occurrence and origin of mono-, di-, and trimethylalkanes in modern and Holocene cyanobacterial mats from Abu Dhabi, United Arab Emirates. Geochimica et Cosmochimica Acta 59:29993015.Google Scholar
Kenig, F., Simons, D.-J. H., Crich, D., Cowen, G. T., Ventura, T., Rehbein-Khalily, T., Brown, T. C., and Anderson, K. B. 2003. Branched aliphatic alkanes with quaternary substituted carbon atoms in modern and ancient geologic samples. Proceedings of the National Academy of Sciences of The United States of America, 100:1255412558.Google Scholar
Kissin, Y. V. 1986. Catagenesis and composition of petrioleum: Origin of n-alkanes and isoalkanes in petroleum crudes. Geochimica et Cosmochimica Acta, 5.1:24452457.Google Scholar
Klomp, U. C. 1986. The chemical structure of a pronounced series of iso-alkanes in South Oman crudes. Organic Geochemistry, 10:807814.CrossRefGoogle Scholar
Li, C., Peng, P., Sheng, G., Fu, J. M., and Yuzhong, Y. 2003. A molecular and isotopic geochemical study of Meso- to Neoproterozoic (1.73–0.85 Ga) sediments from the Jixian section, Yanshan Basin, North China. Precambrian Research, 125:337356.Google Scholar
Lockhart, R. S., Meredith, W., Love, G. D., and Snape, C. E. 2008. Release of bound aliphatic biomarkers via hydropyrolysis from Type II kerogen at high maturity. Organic Geochemistry, 39:11191124.CrossRefGoogle Scholar
Logan, G. A., Summons, R. E., and Hayes, J. M. 1997. An isotopic biogeochemical study of Neoproterozic and Early Cambrian sediments from the Centralian Superbasin, Australia. Geochimica et Cosmochimica Acta, 61:53915409.Google Scholar
Logan, G. A., Calver, C. A., Gorjan, P., Summons, R. E., Hayes, J. M., and Walter, M. R. 1999. Terminal Proterozoic mid-shelf benthic mats in the Centralian Superbasin and their environmental significance. Geochimica et Cosmochimica Acta 63:13451358.Google Scholar
Logan, G. A., Hinman, M. C., Walter, M. R. M., and Summons, R. E. 2001. Biogeochemistry of the 1640 Ma McArthur River (HYC) lead–zinc ore and host sediments, Northern Territory, Australia. Geochimica et Cosmochimica Acta, 65:23172336.Google Scholar
Love, G. D., Snape, C. E., Carr, A. D., and Houghton, R. C. 1995. Release of covalently-bound biomarkers in high yields from kerogen via catalytic hydropyrolysis. Organic Geochemistry, 23:981986.Google Scholar
Love, G. D., Snape, C. E., Carr, A. D., and Houghton, R. C. 1996. Changes in molecular biomarker and bulk carbon skeletal parameters of vitrinite concentrates as a function of rank. Energy & Fuels, 10:149157.Google Scholar
Love, G. D., McAulay, A., Snape, C. E., and Bishop, A. N. 1997. Effect of process variables in catalytic hydropyrolysis on the release of covalently-bound aliphatic hydrocarbons from sedimentary organic matter. Energy & Fuels, 11:522531.Google Scholar
Love, G. D., Snape, C. E., and Fallick, A. E. 1998. Differences in the mode of incorporation and biogenicity of the principal aliphatic constituents of a Type I oil shale. Organic Geochemistry, 28:797811.CrossRefGoogle Scholar
Love, G. D., Grosjean, E., Fike, D. A., Grotzinger, J. P., Bowring, S. A., Condon, D., Lewis, A. N., Stalvies, C., Snape, C. E., and Summons, R. E. 2005a. A >90 million year record of Neoproterozoic sponges (Porifera) in the South Oman Salt Basin. Abstracts 22nd International Meeting on Organic Geochemistry, Seville, I:123124.90+million+year+record+of+Neoproterozoic+sponges+(Porifera)+in+the+South+Oman+Salt+Basin.+Abstracts+22nd+International+Meeting+on+Organic+Geochemistry,+Seville,+I:123–124.>Google Scholar
Love, G. D., Bowden, S. A., Summons, R. E., Jahnke, L. L., Snape, C. E., Campbell, C. N., and Day, J. G. 2005b. An optimised catalytic hydropyrolysis method for the rapid screening of microbial cultures for lipid biomarkers. Organic Geochemistry, 36:6382.Google Scholar
Love, G. D., Fike, D. A., Grosjean, E., Stalvies, C., Grotzinger, J. P., Bradley, A. S., Bowring, S. A., Condon, D., and Summons, R. E. 2006. Constraining the timing of basal metazoan radiation using molecular biomarkers and U-Pb isotope dating. Geochimica et Cosmochimica Acta, 70:A371.Google Scholar
Marshall, C. P., Love, G. D., Snape, C. E., Hill, A. C., Allwood, A. C., Walter, M., Van Kranendonk, M. J., Bowden, S. A., Sylva, S. P., and Summons, R. E. 2007. Structural characterization of kerogen in 3.4 Ga Archaean cherts from the Pilbara Craton, Western Australia. Precambrian Research, 155:123.Google Scholar
McCaffrey, M. A., Moldowan, J. M., Lipton, P.A., Summons, R. E., Peters, K. E., Jeganathan, A., and Watt, D. S. 1994. Paleoenvironmental implications of novel C30 steranes in Precambrian to Cenozoic Age petroleum and bitumen. Geochimica et Cosmochimica Acta, 58:529532.Google Scholar
McCarron, G. 2000. The sedimentology and chemostratigraphy of the Nafun Group, Huqf Supergroup, Oman. PhD dissertation, University of Oxford, 175 p.Google Scholar
McFadden, K, Huang, J., Chu, X., Jiang, G., Kaufman, A. J., Zhou, C., Yuan, X., and Xiao, S. 2008. Pulsed oxidation and biological evolution in the Ediacaran ocean. Proceedings of the National Academy of Sciences of The United States of America, 105:31973202.Google Scholar
McKirdy, D. M., Webster, L. J., Arouri, K. R., Grey, K. G., and Gostin, V. A. 2006. Contrasting sterane signatures in Neoproterozoic marine rocks of Australia before and after the Acraman asteroid impact. Organic Geochemistry, 37:189207.Google Scholar
Moldowan, J. M., Seifert, W. K., Arnold, E., and Clardy, J. 1984. Structure proof and significance of stereoisomeric 28,30-bisnorhopane in petroleum and petroleum source rocks. Geochimica et Cosmochimica Acta, 48:16511661.Google Scholar
Moldowan, J. M., Jacobson, J. R., Dahl, J., Al-Hajii, A., Huizinga, B. J., and Fago, F. J. 2001. Molecular fossils demonstrate Precambrian origin of dinoflagellates, p. 474493. In Zhuralev, A. and Riding, R. (eds.) Ecology of the Cambrian Radiation. Columbia University Press, New York.Google Scholar
Murray, I. P., Love, G. D., Snape, C. E., and Bailey, N. J. L. 1998. Comparison of covalently-bound aliphatic biomarkers released via hydropyrolysis with their solvent-extractable counterparts for a suite of Kimmeridge clays. Organic Geochemistry, 29:14871505.Google Scholar
Olcott, A. N., Sessions, A. L., Corsetti, F. A., Kaufman, A. J., and de Oliviera, T. F. 2005. Biomarker evidence for photosynthesis during Neoproterozoic glaciation. Science, 310:471474.Google Scholar
Peng, P. A., Sheng, G. Y., Fu, J. M., and Yan, Y. Z. 1998. Biological markers in 1.7 billion year old rock from the Tuanshanzi Formation, Jixian strata section, North China. Organic Geochemistry, 29:13211329.Google Scholar
Philippot, P., Van Zuilen, M., Lepot, K., Thomazo, C., Farquhar, J., and Van Kranendonk, M. J. 2007. Early Archean microorganisms preferred elemental sulfur, not sulfate. Science, 317:15341537.Google Scholar
Pratt, L. M., Summons, R. E., and Hieshima, G. B. 1991. Sterane and triterpane biomarkers in the Precambrian Nonesuch Formation, North American Midcontinent Rift. Geochimica et Cosmochimica Acta, 55:911916.Google Scholar
Robinson, N. and Eglinton, G. 1990. Lipid chemistry of Icelandic hot spring microbial mats. Organic Geochemistry, 15, 291298.Google Scholar
Rothman, D. H., Hayes, J. M., and Summons, R. E. 2003. Dynamics of the Neoproterozoic carbon cycle. Proceedings of the National Academy of Sciences of The United States of America 100:81248129.Google Scholar
Russell, C. A., Meredith, W., Snape, C. E., Love, G. D., Clarke, E., and Moffatt, B. 2004. The potential of bound biomarker profiles released via catalytic hydropyrolysis to reconstruct basin charging history for oils. Organic Geochemistry, 35:14411459.Google Scholar
Schoell, M., McCaffrey, M. A., Fago, F. J., and Moldowan, J. M. 1992. Carbon isotopic compositions of 28,30-bisnorhopanes and other biomarkers in a Monterey crude oil. Geochimica et Cosmochimica Acta, 56:13911399.CrossRefGoogle Scholar
Scott, C., Lyons, T. W., Bekker, A., Shen, Y., Poulton, S. W., Chu, X., and Anbar, A.D. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452:456459.Google Scholar
Sephton, M. A., Love, G. D., Watson, J. S., Verchovsky, A. B., Wright, I. P., Snape, C. E., and Gilmour, I. 2004. Hydropyrolysis of insoluble carbonaceous matter in the Murchison meteorite: New insights into its macromolecular structure. Geochimica et Cosmochimica Acta, 68:13851393.Google Scholar
Sephton, M. A., Love, G. D., Meredith, W., Snape, C. E., Sun, C.-G., and Watson, J. S. 2005. Hydropyrolysis: a new technique for the analysis of macromolecular material in meteorites. Planetary and Space Science, 53:12801286.Google Scholar
Shen, Y., Zhang, T., and Hoffman, P. F. 2008. On the coevolution of Ediacaran oceans and animals. Proceedings of the National Academy of The United States of America, 105:73767381.Google Scholar
Sherman, L. S., Waldbauer, J. R., and Summons, R. E. 2007. Improved methods for isolating and validating indigenous biomarkers in Precambrian rocks. Organic Geochemistry, 38:19872000.Google Scholar
Shiea, J., Brassell, S. C., and Ward, D. M. 1990. Mid-chain branched mono- and dimethyl alkanes in hot spring cyanobacterial mats: A direct biogenic source for branched alkanes in ancient sediments? Organic Geochemistry 15:223231.Google Scholar
Summons, R. E., Powell, T. G., and Boreham, C. J. 1988a. Petroleum geology and geochemistry of the middle Proterozoic McArthur Basin, Northern Australia: III. Composition of extractable hydrocarbons. Geochimica et Cosmochimica Acta, 52:17471763.Google Scholar
Summons, R. E. Brassell, S. C., Eglinton, G., Evans, E., Horodyski, R. J., Robinson, N., and Ward, D. M. 1988b. Distinctive hydrocarbon biomarkers from fossiliferous sediment of the Late Proterozoic Walcott Member, Chuar Group, Grand Canyon, U.S.A. Geochimica et Cosmochimica Acta, 52:26252637.Google Scholar
Summons, R. E., and Walter, M. R. 1990. Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments. American Journal of Science, 290-A:212244.Google Scholar
Summons, R. E., Jahnke, L. L., Hope, J. M., and Logan, G. A. 1999. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature, 400:554557.Google Scholar
Thiel, V., Jenisch, A., Wörheide, G., Löwenberg, A., Reitner, J., and Michaelis, W. 1999. Mid-chain branched alkanoic-acids from living fossil demosponges: a link to ancient sedimentary lipids? Organic Geochemistry, 30:114.Google Scholar
Van Kaam-Peters, H. M. E., and Sinninghe Damsté, J. S. 1997. Characterization of an extremely organic sulphur-rich, 150 Ma carbonaceous rock: palaeoenvironmental implications. Organic Geochemistry, 27:371397.Google Scholar
Yin, L., Zhu, M., Knoll, A. H., Yuan, X., Zhang, J., and Hu, J. 2007. Doushantuo embryos preserved inside diapause egg cysts. Nature, 446, 661–633.Google Scholar
Zhang, C. L., Huang, Z., Cantu, J., Pancost, R. D., Brigmon, R. L., Lyons, T. W., and Sassen, R. 2005. Lipid biomarkers and carbon isotope signatures of a microbial (Beggiatoa) mat associated with gas hydrates in the Gulf of Mexico. Applied and Environmental Microbiology, 71:21062112.Google Scholar