Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-13T15:53:24.588Z Has data issue: false hasContentIssue false

Supporting Predators: Changes in the Global Ecosystem Inferred from Changes in Predator Diversity

Published online by Cambridge University Press:  21 July 2017

Richard K. Bambach*
Affiliation:
Virginia Tech; Botanical Museum, Harvard University, 26 Oxford Street, Cambridge, MA 02138 USA
Get access

Abstract

This paper presents new estimates of the genus diversity of predators in each major taxon containing predators, as well as an estimate of the total genus diversity of predators through the Phanerozoic. Predators have never been numerically abundant compared to prey. However, the diversity of predators and the proportion of total faunal diversity composed of predators have both increased over time, implying that ecosystems have increased their ability to support either more predators or more specialization among predators. Also, turnover in diversity dominance among predator groups, with more energetic predator taxa replacing or being added to a fauna of less energetic groups, implies that the energy available in marine food webs has increased. The apparent increase in diversity and biomass of primary producers plus patterns of diversity change in prey taxa supports these inferences based on patterns of change in predators alone.

Type
Section III: Processes
Copyright
Copyright © 2002 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrain, J. M., Westrop, S. R., Chatterton, B. D. E., and Ramsköld, L. 2000. Silurian trilobite alpha diversity and the end-Ordovician mass extinction. Paleobiology, 26:625646.2.0.CO;2>CrossRefGoogle Scholar
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J. Jr., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversity. Proceedings of the National Academy of Sciences (USA), 98:62616266.CrossRefGoogle Scholar
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic, Paleobiology, 3:152167.Google Scholar
Bambach, R. K. 1985. Classes and adaptive variety: The ecology of diversification in marine faunas through the Phanerozoic, p. 191253. In Valentine, J. W. (ed.), Phanerozoic Diversity Patterns: Profiles in Macroevolution. Princeton University Press, Princeton.Google Scholar
Bambach, R. K. 1990. Late Palaeozoic provinciality in the marine realm, p. 307323. In McKerrow, W.S. and Scotese, C. R. (eds.), Palaeozoic Palaeogeography and Biogeography. The Geological Society, London, Memoir 12.Google Scholar
Bambach, R. K. 1993. Seafood through time: Changes in biomass, energetics and productivity in the marine ecosystem. Paleobiology, 19:372397.Google Scholar
Bambach, R. K. 1999. Energetics in the global marine fauna: A connection between terrestrial diversification and change in the marine biosphere. GEOBIOS, 32:131144.Google Scholar
Bambach, R. K., and Knoll, A. H. 1997. Fundamental Physiological Control on Patterns of Diversification in the Marine Biosphere. Geological Society of America, Abstracts With Programs, 29(7):A-31.Google Scholar
Bambach, R. K., Knoll, A. H., and Sepkoski, J. J. Jr. In press. Anatomical and Ecological Constraints on Phanerozoic Animal Diversity in the Marine Realm. Proceedings of the National Academy of Sciences (USA), 99.CrossRefGoogle Scholar
Benton, M. J. (ed.). 1993. The Fossil Record, 2. Chapman and Hall, London.Google Scholar
Bottjer, D. J., and Ausich, W. I. 1986. Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology, 12:400420.Google Scholar
Carroll, R. C. 1988. Vertebrate Paleontology and Evolution. W. H. Freeman and Company, New York, 698 p.Google Scholar
Daley, G. M. 1999. Evaluation of stability of Pliocene communities, Yorktown Formation, Virginia. Unpublished Ph. D. dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.Google Scholar
Daley, G. M., and Kowalewski, M. 2000. Species accumulation curves and sampling efficiency of paleontological data sets. Geological Society of America, Abstracts with Programs, 32(7):A-95.Google Scholar
Engeser, T. S. 1990. Major events in cephalopod evolution, p. 119138. In Taylor, P. D. and Larwood, G. P. (eds.), Major Evolutionary Radiations. Systematics Association Special Volume Series 42. Clarendon Press, Oxford, England.Google Scholar
Engeser, T. S. 1996. The position of the Ammonoidea within the Cephalopoda, p. 319. In Landman, N. H., Tanabe, K., and Davis, R. A. (eds.), Ammonoid Paleobiology. Plenum Press, New York.CrossRefGoogle Scholar
Falkowski, R. G., and Raven, J. A. 1997. Aquatic Photosynthesis. Blackwell Science, Maiden, Massachusetts.Google Scholar
Fortey, R. 2000. Trilobite! Alfred Knopf, New York.Google Scholar
Fortey, R. A., and Owens, R. M. 1999. Feeding habits in trilobites. Palaeontology, 42:429465.CrossRefGoogle Scholar
Goldstein, S. T. 1999. Foraminifera: a biological overview, p. 3755. In Sen Gupta, B. K. (ed.), Modern Foraminifera. Kluwer Academic Publishing, London.Google Scholar
Hyman, L. H. 1940. The Invertebrates: Protozoa through Ctenophora. McGraw-Hill, New York.Google Scholar
Hyman, L. H. 1967. The Invertebrates, Vol. VI, Mollusca 1. McGraw-Hill, New York.Google Scholar
Jacobs, D. K., and Landman, N. H. 1993. Nautilus—a poor model for the function and behavior of ammonoids? Lethaia, 26:101111.Google Scholar
Kirk, J. T. O. 1994. Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. Cambridge University Press, Cambridge.Google Scholar
Kohn, A. J. 1959. Ecology of Conus in Hawaii. Ecological Monographs, 29:4790.Google Scholar
Kowalewski, M., Dulai, A., and Fürsich, R. 1998. A fossil record full of holes: The Phanerozoic record of drilling predation. Geology, 26:10911094.Google Scholar
May, R. M. 1981. Theoretical Ecology: Principles and Applications. Sinauer Associates, Inc., Sunderland, Massachusetts.Google Scholar
Moyle, P. B., and Cech, J. J. Jr. 1996. Fishes: An Introduction to Ichthyology, 3rd edition. Prentice-Hall, Upper Saddle River, New Jersey.Google Scholar
Parker, S. A. (ed.). 1982. Synopsis and Classification of Living Organisms (2 vol). McGraw-Hill, New York.Google Scholar
Peters, S. E., and Foote, M. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology, 27:583601.Google Scholar
Polis, G. A., and Winemiller, K. O. (eds.). 1996. Food Webs: Integration of Patterns and Dynamics. Chapman & Hall, New York.Google Scholar
Powell, M. G., and Kowalewski, M. 2002. Increase in evenness and sampled alpha diversity through the Phanerozoic: Comparison of early Paleozoic and Cenozoic marine fossil assemblages. Geology, 30:331334.Google Scholar
Purnell, M. A. 2001. Scenarios, selection, and the ecology of early vertebrates, p. 187208. In Ahlberg, P. E. (ed.), Major Events in Early Vertebrate Evolution. Systematics Association Special Volume Series 61, Taylor and Francis, New York.Google Scholar
Raup, D. M. 1976. Species diversity in the Phanerozoic: an interpretation. Paleobiology, 2:289297.Google Scholar
Raup, D. M. 1979. Biases in the fossil record of species and genera. Bulletin of the Carnegie Museum of Natural History, 13:8591.Google Scholar
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology, 7:3653.Google Scholar
Sepkoski, J. J. Jr. 1982. A compendium of fossil marine families. Milwaukee Public Museum Contributions in Biology and Geology, 51.Google Scholar
Sepkoski, J. J. Jr. 1992. A compendium of fossil marine families, 2nd ed. Milwaukee Public Museum Contributions in Biology and Geology, 83.Google Scholar
Sepkoski, J. J. Jr., Bambach, R. K., and Droser, M. L. 1991. Secular changes in Phanerozoic event bedding and the biological overprint, p. 298312. In Einsele, B., Ricken, W., and Seilacher, A. (eds.), Cycles and Events in Stratigraphy. Springer-Verlag, Berlin.Google Scholar
Sepkoski, J. J. Jr., Bambach, R. K., Raup, D. M., and Valentine, J. W. 1981. Phanerozoic marine diversity and the fossil record. Nature, 293:435437.CrossRefGoogle Scholar
Signor, P. W. III, and Brett, C. E. 1984. The mid-Paleozoic precursor to the Mesozoic marine revolution. Paleobiology, 10:229245.CrossRefGoogle Scholar
Soukhanov, A. H. (ed.). 1992. The American Heritage Dictionary of the English Language, Third Edition. Houghton Mifflin Company, Boston.Google Scholar
Tappan, H., and Loeblich, A. R. Jr. 1973. Evolution of the oceanic phytoplankton. Earth Science Reviews, 9:207240.Google Scholar
Thayer, C. 1983. Sediment-mediated biological disturbance and the evolution of the marine benthos, p. 479625. In Tevesz, M. and McCall, P. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum, New York.CrossRefGoogle Scholar
Vermeij, G. J. 1977. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology, 3:245258.CrossRefGoogle Scholar
Vermeij, G. J. 1987. Evolution and Escalation: An Ecological History of Life. Princeton University Press, Princeton, New Jersey.Google Scholar
Vermeij, G. J. 1994. The evolutionary interaction among species: selection, escalation, and coevolution. Annual Reviews of Ecology and Systematics, 25:219236.CrossRefGoogle Scholar
Vermeij, G. J. 1995. Economics, volcanoes, and Phanerozoic revolutions. Paleobiology, 21:125152.Google Scholar
Vermeij, G. J., and Lindberg, D. R. 2000. Delayed herbivory and the assembly of marine benthic ecosystems. Paleobiology, 26:419430.Google Scholar
Warner, G. F. 1977. The Biology of Crabs. Elek Science, London.Google Scholar