Skip to main content Accessibility help
Hostname: page-component-747cfc64b6-zm8ws Total loading time: 0.716 Render date: 2021-06-12T15:51:40.207Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Integrating Paleobotanical, Paleosol, and Stratigraphic Data to Study Critical Transitions: A Case Study From The Late Cretaceous–Paleocene Of India

Published online by Cambridge University Press:  21 July 2017

Selena Y. Smith
Department of Earth & Environmental Sciences and Museum of Paleontology, University of Michigan, Ann Arbor, MI 48019 USA <>
Steven R. Manchester
Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 USA
Bandana Samant
Postgraduate Department of Geology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur-440001, India
Dhananjay M. Mohabey
Ex. Geological Survey of India, C-3, HIG, Giripeth, Nagpur-440010, India
Elisabeth Wheeler
Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
Pieter Baas
NCB Naturalis and National Herbarium, Leiden University, PO Box 9517, 2300 RA Leiden, The Netherlands
Dashrath Kapgate
Department of Botany, J.M. Patel College, Bhandara 441904-M.S., India
Rashmi Srivastava
Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow 226 007, India
Nathan D. Sheldon
Department of Earth & Environmental Sciences, University of Michigan, Ann Arbor, MI 48019 USA
E-mail address:
Get access


During the Cretaceous and Paleogene, the Indian subcontinent was isolated as it migrated north from the east coast of Africa to collide with Asia. As it passed over the Reunion hotspot in the late Maastrichtian–early Danian, a series of lava flows extruded, known as the Deccan Traps. Also during this interval, there was a major mass-extinction event at the Cretaceous–Paleogene boundary, punctuated by a meteorite impact at Chicxulub, Mexico. What were the biological implications of these changes in paleogeography and the extensive volcanism in terms of biodiversity, evolution, and biogeography? By combining chronostratigraphic, paleosol, and paleobotanical data, an understanding of how the ecosystems and climates changed and the relative contributions of the Chicxulub impact, Deccan Traps volcanism, and paleogeographic isolation can be gained. Understanding relative ages of paleobotanical localities is crucial to determining floristic changes, and is challenging because different methods (e.g., magnetostratigraphy, radiometric dating, vertebrate and microfossil biostratigraphy) sometimes give conflicting answers, or have not been done for paleobotanical localities. Climatic data can be obtained quantitatively by studying paleosol geochemistry, as well as qualitatively by examining functional traits and nearest living relatives of fossil plants. An additional challenge is revising macrofossil data, which includes some confidently identified taxa and others with uncertain affinities. This is important for understanding ecosystem composition both spatially and temporally, as well as the biogeographic implications of an isolated India.

Research Article
Copyright © 2015 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below.


Arens, N. C., and West, I. D. 2008. Press-pulse: a general theory of mass extinction? Paleobiology, 34:456471.CrossRefGoogle Scholar
Baas, P. 1976. Some functional and adaptive aspects of vessel member morphology, p. 157181 In Baas, P., Bolton, A. J., and Catling, D. M. (eds.), Wood Structure in Biological and Technological Research. Leiden Botanical Series No. 3. Leiden University Press, Leiden.Google Scholar
Baas, P., Srivastava, R., Manchester, S. R., and Wheeler, E. A. 2015. Circular or spherical vessels in the fossil record. IAWA Journal, 36:152157.CrossRefGoogle Scholar
Bailey, I. W. 1953. Evolution of the tracheary tissue of land plants. American Journal of Botany, 40:48.CrossRefGoogle Scholar
Bajpai, S. 2009. Biotic perspective of the Deccan volcanism and India–Asia collision: Recent advances. Current Trends in Science, Platinum Jubilee Special Volume: 505516.Google Scholar
Bajpai, S., and Prasad, G. V. R. 2000. Cretaceous age for Ir-rich Deccan intertrappean deposits: palaeontological evidence from Anjar, western India. Journal of the Geological Society, 157:257260.CrossRefGoogle Scholar
Baksi, A. K. 2001. The Rajahmundry Traps, Andhra Pradesh: evaluation of their petrogenesis relative to the Deccan Traps. Journal of Earth System Science, 110:397407.CrossRefGoogle Scholar
Baksi, S. K., and Deb, U. 1976. On new occurrence of Aquilapollenites from eastern India. Pollen et Spores, 18:399406.Google Scholar
Bande, M. B., and Chandra, S. 1990. Early Tertiary vegetational reconstructions around Nagpur-Chhindwara and Mandla, central India, p. 196208 In Jain, K. P. and Tiwari, R. S. (eds.), Proceedings of the Symposium ‘Vistas in Indian Paleobotany’ Palaeobotanist, 38.Google Scholar
Bande, M. B., and Prakash, U. 1982. Palaeoclimate and palaeogeography of Central India during Early Tertiary. Geophytology, 12:152165.Google Scholar
Bande, M. B., and Khatri, S. K. 1980. Some more fossil woods from the Deccan Intertrappean beds of Mandla District, Madhya Pradesh, India. Palaeontographica, 173B:147165.Google Scholar
Beane, J. E., Turner, C. A., Hooper, P. R., Subbarao, K. V., and Walsh, J. N. 1986. Stratigraphy, composition and form of the Deccan basalt, Western Ghats, India. Bulletin of Volcanology, 48:6183 doi:10.1007/BF01073513.CrossRefGoogle Scholar
Bhandari, N., Gupta, M., Pande, J., and Shukla, P. N. 1994. Chemical profiles in K/T boundary section of Meghalaya, India: cometary, asteroidal or volcanic. Chemical Geology, 113:4560.CrossRefGoogle Scholar
Bhandari, N., Shukla, P. N., Ghevariya, Z. G., and Sundaram, S. M. 1995. Impact did not trigger Deccan volcanism: Evidence from Anja K/T boundary intertrappean sediments. Geophysical Research Letters, 22:433436.CrossRefGoogle Scholar
Bhandari, N., Ghevariya, Z. G., and Sunderam, S. M. 1996. K/T Boundary layer in the Deccan intertrappean at Anjar Kutch, p. 417424 In Ryder, G., Fastovsky, D., and Gartner, S. (eds.), The Cretaceous Tertiary Event and Other Catastrophes in Earth History. Geological Society of America Special Paper, 307.Google Scholar
Bonde, S. D. 2008. Indian fossil monocotyledons: current status, recent developments and future directions. The Palaeobotanist, 57:141164.Google Scholar
Borger, H., and Widdowson, M. 2001. Indian laterites, and lateritious residues of southern Germany: a petrographic, mineralogical, and geochemical comparison. Zeitschrift fur Geomorphologie, 45:177200.Google Scholar
Braman, D. R. 2013. Triprojectate pollen occurrences in the western Canada sedimentary basin and the group's global relationships. Royal Tyrrell Museum of Paleontology Contribution Series, 1:1538.Google Scholar
Breecker, D. O., Sharp, Z. D., and McFadden, L. 2009. Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA. Geological Society of America Bulletin, 121:630640.CrossRefGoogle Scholar
Carlquist, S. 1975. Ecological Strategies of Xylem Evolution. University of California Press, Berkeley.Google Scholar
Carlquist, S. 1977. Ecological factors in wood evolution: a floristic approach. American Journal of Botany, 64:887896.CrossRefGoogle Scholar
Carlquist, S. 1988. Comparative Wood Anatomy: Systematic, Ecological, and Evolutionary Aspects of Dicotyledon Wood. Springer, New York.CrossRefGoogle Scholar
Chenet, A.-L., Quidelleur, X., Fluteau, F., Courtillot, V., and Bajpai, S. 2007. 40K–40Ar dating of the main Deccan large igneous province: further evidence of KTB age and short duration. Earth and Planetary Science Letters, 263:115.CrossRefGoogle Scholar
Chenet, A.-L., Fluteau, F., Courtillot, V., Gerard, M., and Subbarao, K.V. 2008. Determination of rapid Deccan eruptions across the KTB using paleomagnetic secular variation: 1. Results from 1200 m thick section in the Mahabaleshwar escarpment. Journal of Geophysical Research, 113:B04101, doi:10.1029/2006JB004635.CrossRefGoogle Scholar
Chenet, A.-L., Courtillot, V., Fluteau, F., Gerard, M., Quidelleur, X., Khadri, S. F. R, Subbarao, K. V., and Thordarson, T. 2009. Determination of rapid Deccan eruptions across the Cretaceous–Tertiary boundary using paleomagnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500 m thick composite section. Journal of Geophysical Research, 114:B06103. doi:10.1029/2008JB005644.CrossRefGoogle Scholar
Chitaley, S. D. 1962. Synopsis of the literature on the Deccan Intertrappean flora of India published during 1928–1960. Nagpur Times Publications.Google Scholar
Chitaley, S. D., and Kate, U. R. 1977. Enigmocarpon sahnii sp. nov. from the Mohgaonkalan beds of India. Review of Palaeobotany and Palynology, 23:389398.CrossRefGoogle Scholar
Chitaley, S. D., and Sheik, M. D. 1973. Harrisostrobus intertrappea gen. et sp. nov. a petrified gymnospermous cone from the Deccan intertrappean beds of India. Palaeontographica Abteilung B, 144:2530.Google Scholar
Christman, M. A., and Sperry, J. 2010. Single-vessel flow measurements indicate scalariform perforation plates confer higher resistance than previously estimated. Plant, Cell & Environment, 33:431443.CrossRefGoogle ScholarPubMed
Chudnoff, M. 1976. Density of timbers as influenced by climatic life zones. The Commonwealth Forestry Review, 55:203217.Google Scholar
Cotton, J. M., Hyland, E. G., and Sheldon, N. D. 2014. Multiproxy evidence for tectonic control on the expansion of C4 grasses in northwest Argentina. Earth and Planetary Science Letters, 395:4150 doi:10.1016/j.epsl.2014.03.014.CrossRefGoogle Scholar
Cotton, J. M., Sheldon, N. D., and Strömberg, C. A. E. 2012. High-resolution isotopic record of C4 photosynthesis in a Miocene grassland. Palaegeography, Palaeoclimatology, Palaeoecology, 337–338:8898. doi:10.1016/j.palaeo.2012.03.035.CrossRefGoogle Scholar
Courtillot, V., Gallet, Y., Rocchia, R., Feraud, G., Robin, E., Hoffman, C., Bhandari, N., and Ghevariya, Z. G. 2000. Cosmic markers, 40Ar/39Ar dating and paleomagnetism of the KT sections in the Anjar area of the Deccan large igneous province. Earth and Planetary Science Letters, 182:137156.CrossRefGoogle Scholar
Cox, K. G. 1989. The role of mantle plumes in the development of continental drainage patterns. Nature, 342:873877.CrossRefGoogle Scholar
Cox, K. G., and Hawksworth, C. J. 1985. Geochemical stratigraphy of the Deccan Traps at Mahabaleshwar, Western Ghats, India, with implications for open system magnetic processes. Journal of Petrology, 26:355377.CrossRefGoogle Scholar
Dayal, R. 1965. Sapindoxylon schleicheroides sp. nov., a fossil dicotylendonous wood from the Deccan Intertrappean beds of Madhya Pradesh. The Palaeobotanist, 13:163167.Google Scholar
Dogra, N. N., Singh, R. Y., and Kulshrestha, S. K. 1988. Palynological evidence on the age of Jabalpur and Lameta formations in the type area. Current Science, 57:954956.Google Scholar
Dogra, N. N., Singh, Y. R., and Singh, R. Y. 2004. Palynological assemblage from the Anjar intertrappean beds, Kutch, District Gujarat. Current Science, 86:15961597.Google Scholar
Dworkin, S. I., Nordt, L., and Atchley, S. 2005. Determining terrestrial paleotemperatures using the oxygen isotopic composition of pedogenic carbonate. Earth and Planetary Science Letters, 237:5668.CrossRefGoogle Scholar
Eiler, J. M. 2011. Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quaternary Science Reviews, 30:35753588.CrossRefGoogle Scholar
Escapa, I. H., Rothwell, G. W., Stockey, R. A., and Cúneo, N. R. 2012. Seed cone anatomy of Cheirolepidiaceae (Coniferales): reinterpreting Pararaucaria patagonica Wieland. American Journal of Botany, 99:10581068.CrossRefGoogle ScholarPubMed
Escapa, I. H., Cúneo, N. R., Rothwell, G. W., and Stockey, R. A. 2013. Pararaucaria delfueyoi sp. nov. from the Late Jurassic Cañadón Calcáreo Formation, Chubut, Argentina: insights into the evolution of the Cheirolepidiaceae. International Journal of Plant Sciences, 174:458470.CrossRefGoogle Scholar
Fox, D. L., and Koch, P. L. 2003. Tertiary history of C4 biomass in the Great Plains, USA. Geology, 31:809812.CrossRefGoogle Scholar
Friis, E. M., Crane, P. R., and Pedersen, K. R. 2011. Early Flowers and Angiosperm Evolution. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Gallagher, T. M., and Sheldon, N. D. 2013. A new paleothermometer for forest paleosols and its implications for Cenozoic climate. Geology, 41:647650.CrossRefGoogle Scholar
Gandolfo, M. A., Nixon, K. C., and Crepet, W. L. 2000. Monocotyledons: a review of their Early Cretaceous record, p. 4451 In Wilson, K. L. and Morrison, D. A. (eds.), Monocots: Systematics and Evolution. CSIRO, Collingwood, Australia.Google Scholar
Gertsch, B., Keller, G., Adatte, T., Garg, R., Prasad, V., Berner, Z., and Fleitmann, D. 2011. Environmental effects of Deccan volcanism across the Cretaceous–Tertiary transition in Meghalaya, India. Earth and Planetary Science Letters, 310:272285.CrossRefGoogle Scholar
Ghevariya, Z. G. 1988. Intertrappean dinosaur fossils from Anjar area, Kachcha District, Gujarat. Current Science, 57:248251.Google Scholar
Graham, S. A. 2013. Fossil records in the Lythraceae. Botanical Review, 79:48145.CrossRefGoogle Scholar
Greenwood, D. R., and Wing, S. L. 1995. Eocene continental climates and latitudinal temperature gradients. Geology, 23:10441048.2.3.CO;2>CrossRefGoogle Scholar
Geological Survey Of India (GSI). 2001. District Resource Map of Dhar, District, Madhya Pradesh: Kolkata, Geological Survey of India, scale 1:125,000.Google Scholar
Guleria, J. S. 2005. On the occurrence of two monocots in the Deccan Intertrappean sediments of Kachchh, Gujarat, Western India, p. 233244 In Bahadur, B. (ed.), Gleanings in Botanical Research–Current Scenario, Ramanujam Commemoration Volume, Dattsons, Nagpur, India.Google Scholar
Guleria, J. S., and Srivastava, R. 2001. Fossil dicotyledonous woods from the Deccan Intertrappean Beds of Kachchh, Gujarat, Western India. Palaeontographica, 256B:1733.Google Scholar
Hansen, H. J., Mohabey, D. M., and Toft, P. 2001. No K/T boundary at Anjar, Gujarat: evidence from magnetic susceptibility and carbon isotope. Proceedings of the Indian Academy Science (Earth and Planetary Science), 110:110.Google Scholar
Hansen, H. J., Mohabey, D. M., Lojen, S., Toft, P., and Sarkar, A. 2005. Orbital cycles and stable carbon isotopes of sediments associated with Deccan Volcanic Suite, India: Implications for the stratigraphic correlation and Cretaceous/Tertiary boundary. Gondwana Geological Magazine, 8:528.Google Scholar
Herendeen, P. S., and Crane, P. R. 1995. The fossil history of the monocotyledons, p. 121 In Rudall, P. J., Cribb, P. J., Cutler, D. F., and Humphries, C. J. (eds.), Monocotelydons: Systematics and Evolution. Royal Botanic Gardens, Kew, Richmond, Surrey, UK.Google Scholar
Hyland, E. G., Smith, S. Y., and Sheldon, N. D. 2013. Representational bias in phytoliths from modern soils of central North America: implications for paleovegetation reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 374:338348 doi:10.1016.j.palaeo.2013.01.026.CrossRefGoogle Scholar
Hyland, E. G., Sheldon, N. D., Van Der Voo, R., Badgley, C., and Abrajevitch, A. 2015. A new paleoprecipitation proxy based on soil magnetic properties: implications for expanding paleoclimate reconstructions. Geological Society of America Bulletin v. 127(7–8):975981. doi: 10.1130/B31207.1.Google Scholar
Inamdar, P. M., and Kumar, D. 1994. On the origin of bole beds in Deccan Traps. Journal of the Geological Society of India, 44:331334.Google Scholar
InsideWood Database. 2004onwards. Published on the internet. Scholar
Jay, A. E., and Widdowson, M. 2008. Stratigraphy, structure and volcanology of the SE Deccan continental flood basalt province: implications for eruptive extent and volumes. Journal of the Geological Society, London, 165:177188.CrossRefGoogle Scholar
Kadoo, L. A., and Kolhe, P. D. 2002. A new capsular fruit Duabangocarpon deccanii from Intertrappean bed of Mohgaon Kalan, Madhya Pradesh. Gondwana Geological Magazine, 17:3946.Google Scholar
Kapgate, D. K. 2005. Megafloral analysis of intertrappean sediments with focus on diversity and abundance of flora of Mohgaonkalan, Mandla and adjoining areas of Madhya Pradesh. Gondwana Geological Magazine, 20:3146.Google Scholar
Kar, R. K., and Srinivasan, S. 1997. Late Cretaceous palynofossils from the Deccan Intertrappean beds of Mohgaon-Kalan, Chhindwara District, Madhya Pradesh. Geophytology, 27:1722.Google Scholar
Kar, R. K., Mohabey, D. M., and Srivastava, R. 2004. First occurrence of angiospermous (dicot) fossil woods from the Lameta Formation (Maastrichtian), Maharashtra, India. Geophytology, 33:2127.Google Scholar
Kar, R. K., Sahni, A., Ambwani, K., and Singh, R. S. 1998. Palynology of Indian onshore and offshore Maastrichtian sequence in India: implication for correlation and palaeogeography of India. Indian Journal of Petroleum Geology, 7:3949.Google Scholar
Keller, G. 2005. Biotic effects of late Maastrichtian mantle plume volcanism: implications for impacts and mass extinctions. Lithos, 79:317341.CrossRefGoogle Scholar
Keller, G., Adatte, T., Bajpai, S., Mohabey, D. M., Widdowson, M., Khosla, A., Sharma, R., Khosla, S. C., Gertsch, B., Fleitmann, D., and Sahni, A. 2009. K–T transition in Deccan traps and intertrappean beds in central India mark major marine seaway across India. Earth and Planetary Science Letters, 282:1023.CrossRefGoogle Scholar
Keller, G., Adatte, T., Gardin, S., Bartolini, A., and Bajpai, S. 2008. Main Deccan volcanism phase ends near the K–T boundary: Evidence from the Krishna–Godavari Basin, SE India. Earth and Planetary Science Letters, 268:293311.CrossRefGoogle Scholar
Keller, G., Adatte, T., Bhowmick, P. K., Upadhyay, H., Dave, A., Reddy, A. N., and Jaiprakash, B. C. 2012. Nature and timing of extinctions in Cretaceous–Tertiary planktic foraminifera preserved in Deccan Intertrappean sediments of the Krishna–Godavari Basin, India. Earth and Planetary Science Letters, 341:211221.CrossRefGoogle Scholar
Khosla, A., and Sahni, A. 2003. Biodiversity during the Deccan volcanic eruptive episode. Journal of Asian Earth Sciences, 21:895908.CrossRefGoogle Scholar
Knight, K. B., Renne, P. R., Halkett, A., and White, N. 2003. 40Ar/39Ar dating of the Rajahmundry Traps, eastern India and their relationship to the Deccan traps. Earth and Planetary Science Letters, 208:8599.CrossRefGoogle Scholar
Knight, K. B., Renne, P. R., Baker, J., Waight, T., and White, N. J. 2005. Reply to ‘Ar–40/Ar–39 dating of the Rajahmundry Traps, Eastern India and their relationship to the Deccan Traps: Discussion’ by A. K. Baksi. Earth and Planetary Science Letters, 239:374382.CrossRefGoogle Scholar
Kraus, M. J. 1999. Paleosols in clastic sedimentary rocks: their geologic applications. Earth-Science Reviews, 47:4170.CrossRefGoogle Scholar
Krishnan, M. S. 1960. Geology of India and Burma. Higginbothams, Madras.Google Scholar
Kumaran, K. P. N., Bonde, S. D., and Kanitkar, M. D. 1997. An Aquilapollenites associated palynoflora from Mohgaon Kalan and its stratigraphic implications for age and stratigraphic correlation of Deccan Intertrappean beds. Current Science, 72:590592.Google Scholar
Lakhanpal, R. N., Maheshwari, H. K., and Awasthi, N. 1976. A Catalogue of Indian Fossil Plants. Birbal Sahni Institute of Paleobotany, Lucknow.Google Scholar
Lightfoot, P. C., and Hawkesworth, C. J. 1988. Origin of Deccan Trap lavas: evidence from combined trace elements and Sr-Nd and Pb-isotope studies. Earth and Planetary Science Letters, 91:89104.CrossRefGoogle Scholar
Lightfoot, P. C., Hawkesworth, C. J., Devey, C. W., Rogers, N. W., and Van Calsteren, P. W. C. 1990. Source and differentiation of Deccan trap lavas: implications of geochemical and mineral chemical variations. Journal of Petrology, 31:11651200.CrossRefGoogle Scholar
Mack, G. H., James, W. C., and Monger, H. C. 1993. Classification of paleosols. Geological Society of America Bulletin, 105:129136.2.3.CO;2>CrossRefGoogle Scholar
Mahabale, T. S., and Deshpande, J. V. 1957. The genus Sonneratia and its fossil allies. The Palaeobotanist, 6:5164.Google Scholar
Mahabale, T. S., and Rao, S. V. 1973. Fossil flora of Rajahmundry area, p. 192214 In Mahabale, T. S. (ed.), Proceedings of the Symposium on Deccan Trap Country, New Delhi, INSA Bulletin, 45.Google Scholar
Mahoney, J. J. 1988. Deccan traps, p. 151194 In MacDougall, J. D. (ed.) Continental Flood Basalts. Kluwer Academic Press, Dordrecht.CrossRefGoogle Scholar
Mahoney, J. J., MacDougall, J. D., Lugmair, G. W., Murli, A. V., Sankar Das, M., and Gopalan, K. 1982. Origin of Deccan trap flows at Mahabaleshwa inferred from ND and SR isotopic and chemical evidence. Earth and Planetary Science Letters, 60:4760.CrossRefGoogle Scholar
Manchester, S. R., Kapgate, D. K., and Wen, J. 2013. Oldest fruits of the grape family (Vitaceae) from the late Cretaceous Deccan cherts of India. American Journal of Botany, 100:18491859.Google Scholar
Mathur, Y. K., and Sharma, K. D. 1990. Palynofossils and age of the Ranipur Intertrappean bed, Gaur River, Jabalpur, Madhya Pradesh, p. 5859 In Sahni, A. and Jolly, A. (eds.), Cretaceous Event Stratigraphy and Correlation of the Indian Nonmarine Strata. Workshop, I.G.C.P. Projects 216 and 245, Chandigarh, India.Google Scholar
Miller, L. A., Smith, S. Y., Sheldon, N. D., and Strömberg, C. A. E. 2012. Eocene vegetation dynamics inferred from a high-resolution phytolith record. Geological Society of America Bulletin, 124:15771589.CrossRefGoogle Scholar
Mohabey, D. M. 1990. Dinosaur eggs from Lameta Formation of western and central India: Their occurrence and nesting behavior, p. 8689 In Sahni, A. and Jolly, A. (eds.), Cretaceous Event Stratigraphy and the Correlation of the Indian Nonmarine Strata. Workshop, I.G.C.P. Projects 216 and 245, Chandigarh, India.Google Scholar
Mohabey, D. M. 1996. Depositional environment of Lameta Formation (late Cretaceous) of Nand-Dongargaon Basin, Maharashtra: The fossil and lithofacies evidence. Memoirs of the Geological Society of India, 37:363386.Google Scholar
Mohabey, D. M. 1998. Systematics of Indian Upper Cretaceous dinosaur and chelonian eggshells. Journal of Vertebrate Paleontology, 18:348362.CrossRefGoogle Scholar
Mohabey, D. M. 2001. Indian dinosaur eggs: a review. Journal of the Geological Society of India, 58:479508.Google Scholar
Mohabey, D. M. 2005. Late Cretaceous (Maastrichtian) nests, eggs and dung mass (coprolites) of sauropods (titanosaurs) from India, p. 466489 In Tidwell, V. and Carpenter, K. (eds.), Thunder Lizards: The Sauropodomorph Dinosaurs. Indiana University Press, Bloomington.Google Scholar
Mohabey, D. M., and Samant, B. 2013. Deccan continental flood basalt eruption terminated Indian dinosaurs before the Cretaceous–Paleogene boundary. Geological Society of India Special Publication, 1:260267.Google Scholar
Mohabey, D. M., Udhoji, S. G., and Verma, K. K. 1993. Palaeontological and sedimentological observations on non-marine Lameta Formation (Upper Cretaceous) of Maharashtra, India: their palaeoecological and paleoenvironmental significance. Paleogeography, Paleoclimatology, Paleoecology, 105:8394.CrossRefGoogle Scholar
Najafi, S. J., Cox, K. G., and Sukeshwala, R. N. 1981. Geology and geochemistry of the basalt flows (Deccan Traps), of the Mahad-Mahabaleshwar section, India, p. 300315 In Subarao, K. V. and Sukeshwala, R. M. (eds.), Deccan Volcanism and Related Basalt Provinces in Other Parts of the World. Journal of the Geological Society of India Mémoire 3.Google Scholar
Nambudiri, E. M. V., and Tidwell, W. D. 1978. On the probable affinities of Viracarpon Sahni from the Deccan Intertrappean flora of India. Palaeontographica Abteilung B, 166:3043.Google Scholar
Nordt, L. C., and Driese, S. D. 2010. New weathering index improves paleorainfall estimates from Vertisols. Geology, 38:407410.CrossRefGoogle Scholar
Óskarsson, B. V., Riishuus, M. S., and Arnalds, Ó. 2012. Climate-dependent chemical weathering of volcanic soils in Iceland. Geoderma, 189–190:635651.CrossRefGoogle Scholar
Patil, G. V. 1972. Viracarpon chitaleyi, sp. nov., from the Deccan Intertrappean beds of Mohgaon Kalan, India. Botanique, 3:2126.Google Scholar
Passey, B. H., Levin, N. E., Cerling, T. E., Brown, F. H., and Eiler, J.M. 2012. High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. Proceedings of the National Academy of Sciences, 107:11245.CrossRefGoogle ScholarPubMed
Pearson, R. S., and Brown, H. P. 1932. Commercial Timbers of India. Their Distribution, Supplies, Anatomical Structure, Physical and Mechanical Properties and Uses. Volumes 1, 2. Government of India, Central Publication Branch, Calcutta.Google Scholar
Peng, Z. X., Mohaney, J. J., Hooper, P. R., Harris, C., and Beane, J. E. 1994. A role for lower continental crust in flood basalt genesis? Isotopic and incompatible element study of the lower six formations of the western Deccan traps. Geochimica et Cosmochimica Acta, 58:267288.CrossRefGoogle Scholar
Prakash, U. 1956. Studies on the Deccan Intertrappean flora: On a petrified ovuliferous cone from Mohgaonkalan cherts in Deccan. The Palaeobotanist, 5:9194.Google Scholar
Prakash, U. 1960. A survey of the Deccan Intertrappean flora of India. Journal of Paleontology, 34:10271040.Google Scholar
Prakash, U. 1961. Further observations on a petrified ovuliferous cone (Mohgaostrobus sahnii gen. et sp. nov.) from Mohgaon cherts in the Deccan. The Palaeobotanist, 10:15.Google Scholar
Prakash, U., and Dayal, R. 1963 (1964). Fossil woods resembling Elaeocarpus and Leea from the Deccan Intertrappean beds of Mahurzari near Nagpur. The Palaeobotanist, 12:121127.Google Scholar
Prakash, T., Singh, R. Y., and Sahni, A. 1990. Palynofloral assemblage from the Padwar Deccan intertrappean (Jabalpur) M.P., p. 6869 In Sahni, A. and Jolley, A. (eds.), Cretaceous Event Stratigraphy and the Correlation of the Indian Non-marine Strata. Contribution Seminar/Workshop IGCP–216, 245, Chandigarh, India.Google Scholar
Prasad, B., Jain, A. K., and Mathur, Y. K. 1995. A standard palynozonation scheme for the Cretaceous and pre-Cretaceous subsurface sediments of Krishna-Godavari Basin, India. Geoscience Journal, 16:155232.Google Scholar
Prasad, G. V. R., and Sahni, A. 2014. Vertebrate fauna from the Deccan volcanic province: Response to volcanic activity, p. 193211 In Keller, G. and Kerr, A.C. (eds.), Volcanism, Impacts, and Mass Extinctions: Causes and Effects: Geological Society of America Special Paper, 505.Google Scholar
Prasad, G. V. R., Verma, O., Sahni, A., Krause, D. W., Khosla, A., and Parmar, V. 2007. A new late Cretaceous gondwanatherian mammal from central India. Proceedings of the Indian National Science Academy, 73:1724.Google Scholar
Prasad, G. V. R., Verma, O., Gheerbrant, E., Goswami, A., Khosla, A., Parmar, V., and Sahni, A. 2010. First mammal evidence from the Late Cretaceous of India for biotic dispersal between India and Africa at the KT transition. Comptes Rendus Palevol, 9:6371.CrossRefGoogle Scholar
Prasad, V., Strömberg, C. A. E., Alimohammadian, H., and Sahni, A. 2005. Dinosaur coprolites and the early evolution of grasses and grazers. Science, 310:11771180.CrossRefGoogle ScholarPubMed
Prasad, V., Strömberg, C. A. E., Leaché, A. D., Samant, B., Patnaik, R., Tang, L., Mohabey, D. M., Ge, S., and Sahni, A. 2011. Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae. Nature Communications, 2:480. doi:10.1038/ncomms1482.CrossRefGoogle ScholarPubMed
Quade, J., Eiler, J., Daëron, M.M., and Achyuthan, H. 2013. The clumped isotope geothermometer in soil and paleosol carbonate. Geochimica et Cosmochimica Acta, 105:92107.CrossRefGoogle Scholar
Rage, J.-C., Prasad, G. V. R., and Bajpai, S. 2004. Additional snakes from the uppermost Cretaceous (Maastrichtian) of India. Cretaceous Research, 25:425434.CrossRefGoogle Scholar
Rao, S. R. N., and Rao, K. S. 1939. The fossil charophyta of the Deccan Intertrappeans near Rajahmundry. Palaeontologica Indica (new series) 29(2):214.Google Scholar
Rao, S. R. N., and Rao, K. S. 1940. More algae from the Rajamundry Intertrappean. Proceedings of the 27th Indian Science Congress, 3:116119.Google Scholar
Rao, J. S. R. K., and Ramanujam, C. G. K. 1966. On the occurrence of a fossil dicot wood from Dudukur near Rajahmundry. Current Science, 35(10):257259.Google Scholar
Renne, P. R., Sprain, C. J., Richards, M. A., Self, S., Vanderklüysen, L., and Pande, K. In press. State-shift in Deccan volcanism at the Cretaceous-Paleogene boundary possibly induced by impact. Science.Google Scholar
Retallack, G. J. 1991. Untangling the effects of burial alteration and ancient soil formation. Annual Reviews of Earth and Planetary Sciences, 19:183206.CrossRefGoogle Scholar
Retallack, G. J. 1998. Core concepts of paleopedology. Quaternary International, 51/52:203212.CrossRefGoogle Scholar
Retallack, G. J. 2001. Soils of the Past: An Introducton to Paleopedology (2nd ed.). Blackwell, Oxford.CrossRefGoogle Scholar
Retallack, G. J. 2005. Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosols. Geology, 33:333336.CrossRefGoogle Scholar
Retallack, G. J. 2001. Cenozoic expansion of grasslands and climatic cooling. Journal of Geology, 109:407426.CrossRefGoogle Scholar
Retallack, G. J., and Huang, C.-M. 2010. Depth to gypsic horizon as a proxy for paleoprecipitation in paleosols of sedimentary environments. Geology, 38:403406.CrossRefGoogle Scholar
Richter, H. G., Grosser, D., Heinz, I., and Gasson, P. E. 2004. IAWA list of microscopic features for softwood identification. IAWA Journal, 25:170.Google Scholar
Rode, K. P. 1933a. A note on fossil angiospermous fruits from the Deccan Intertrappean beds of Central Provinces. Current Science, 2(5): 171172.Google Scholar
Rode, K. P. 1933b. Petrified palms from the Deccan Intertrappean Beds-I. Quarterly Journal of the Geological, Mineralogical, and Metallurgical Society of India 5(2):7583.Google Scholar
Rowley, D. B. 1996. Age of initiation of collision between India and Asia: A review of stratigraphic data. Earth and Planetary Science Letters, 145:113.CrossRefGoogle Scholar
Sahni, B. 1931. Revision of Indian fossil plants. Part II: Coniferales (b. petrifactions). Memoirs of the Geological Society of India, Paleontologia Indica (n. s.), 11:51124.Google Scholar
Sahni, B. 1940. The Deccan Traps: An episode of Tertiary era. General Presidential Address. Proceedings of the 27th Indian Science Congress, 2:121.Google Scholar
Sahni, B. 1943. Indian silicified plants, 2. Enigmocarpon parijai, a silicified fruit from the Deccan, with a review of the fossil history of the Lythraceae. Proceedings of the Indian Academy of Sciences, 17:5996.Google Scholar
Sahni, B. 1944. Genus Viracarpon Sahni: Palaeobotany in India-V. Proceedings of the National Academy of Sciences of India, 14:8082.Google Scholar
Sahni, A., and Prasad, G. V. R. 2009. Geodynamic evolution of the Indian Plate: consequences for dispersal and distribution of biota. Geological Society of India Memoirs, 66:203225.Google Scholar
Sahni, A., and Tripathi, A. 1990. Age implication of the Jabalpur Lameta Formation and intertrappean biota, p. 3537 In Sahni, A. and Jolley, A. (eds.), Cretaceous Event Stratigraphy and the Correlation of the Indian Non-marine Strata. Contribution Seminar/Workshop IGCP–216, 245, Chandigarh, India.Google Scholar
Sahni, A., Venkatachala, B. S., Kar, R. K., Rajanikanth, A., Prakash, T., Prasad, G. V. R., and Singh, R. Y. 1996. A new palynological data from the Deccan Intertrappean beds: implications for the latest record of dinosaurs and synchronous initiation of volcanic activity in India. Memoirs of the Geological Society of India, 37:267283.Google Scholar
Samant, B., and Bajpai, S. 2005. Palynoflora from Lakshmipur intertrappean deposits of Kutch, Gujarat: Age implications. Journal of the Paleontological Society of India, 50:177182.Google Scholar
Samant, B., and Mohabey, D. M. 2003. Late Cretaceous (Maastrichtian) non marine dinoflagellates Peridiniales and Aquilapollenites bearing palynoassemblage from a new Deccan Intertrap near Daiwal river section, Chandrapur District, Maharashtra. Gondwana Geological Magazine, 18:1926.Google Scholar
Samant, B., and Mohabey, D. M. 2005. Response of flora to Deccan volcanism: A case study from Nand-Dongargaon basin of Maharashtra, Implications to environment and climate; Gondwana Geological Magazine Special Publication, 8:151164.Google Scholar
Samant, B., and Mohabey, D. M. 2009. Palynoflora from Deccan volcano-sedimentary sequence (Cretaceous–Palaeogene transition) of central India: implications for spatio-temporal correlation. Journal of Biosciences, 34:811823.CrossRefGoogle ScholarPubMed
Samant, B., and Mohabey, D. M. 2014. Deccan continental flood basalt eruption terminated Indian dinosaurs before the Cretaceous–Paleogene boundary. Geological Society of India Special Publication, 1:260267.Google Scholar
Samant, B., Mohabey, D. M., and Kapgate, D. K. 2008. Palynofloral record from Singpur Intertrappean, Chhindwara District, Madhya Pradesh: Implication for Late Cretaceous stratigraphic correlation and resolution. Journal of the Geological Society of India, 71:851858.Google Scholar
Samant, B., Mohabey, D. M., and Paudayal, K. N. 2013. Aquilapollenites and other triprojectate pollen from the Late Cretaceous–early Paleocene Deccan intertrappean deposits of India. Palynology, 37:298315 doi: 10.1080/01916122.2013.787125.CrossRefGoogle Scholar
Samant, B., Mohabey, D. M., Srivastava, P., and Thakre, D. 2014. Palynology and clay mineralogy of the Deccan volcanic associated sediments of Saurashtra, Gujarat: age and paleoenvironments. Journal of Earth Systems Science, 123:219232.CrossRefGoogle Scholar
Sarkar, A, Bhattacharya, S. K., and Mohabey, D. M. 1991. Stable-isotope analyses of dinosaur eggshells: Paleoenvironmental implications. Geology, 19:10681071.2.3.CO;2>CrossRefGoogle Scholar
Sayyed, M. R. G., and Hunderkari, S. M. 2006. Preliminary comparison of ancient bole beds and modern soils developed upon the Deccan volcanic basalts around Pune (India): potential for palaeoenvironmental reconstruction. Quaternary International, 156–157:189199.CrossRefGoogle Scholar
Schöbel, S., De Wall, H. D., Ganerød, M., Pandit, M. K., and Rolf, C. 2014. Magnetostratigraphy and 40Ar-39 Ar geochronology of the Malwa Plateau region (Northern Deccan Traps), central western India: Significance and correlation with main Deccan Large Igneous Province sequence. Journal of Asian Earth Sciences, 89:2845.CrossRefGoogle Scholar
Schoene, B., Samperton, K. M., Eddy, M. P., Keller, G., Adatte, T., Bowring, S. A., Khadri, S. F., and Gertsch, B. 2015. U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction. Science, 347:182184.CrossRefGoogle ScholarPubMed
Scotese, C. R. 2004. A continental drift flipbook. Journal of Geology, 112:729741.CrossRefGoogle Scholar
Self, S., Jay, A. E., Widdowson, M., and Kaszthelyi, L. P. 2008. Correlation of the Deccan and Rajahmundry Trap lavas: are these the longest and largest lava flows on Earth? Journal of Volcanological and Geothermal Research, 172:319.CrossRefGoogle Scholar
Sheldon, N. D. 2003. Pedogenesis and geochemical alteration of the picture gorge subgroup, Columbia River Basalt, Oregon. Geological Society of America Bulletin, 115:13771387.CrossRefGoogle Scholar
Sheldon, N. D. 2006. Quaternary glacial–interglacial climate cycles in Hawaii. Journal of Geology 114:367376.CrossRefGoogle Scholar
Sheldon, N. D., and Tabor, N. J. 2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Science Reviews, 95:152.CrossRefGoogle Scholar
Sheldon, N. D., Retallack, G. J., and Tanaka, S. 2002. Geochemical climofunctions from North America soils and application to paleosols across the Eocene–Oligocene boundary in Oregon. Journal of Geology, 110:687696.CrossRefGoogle Scholar
Shrivastava, J. P., Duncan, R. A., and Kashyap, M. 2015. Post-K/PB younger 40 Ar–39 Ar ages of the Mandla lavas: Implications for the duration of the Deccan volcanism. Lithos, 224:214224.CrossRefGoogle Scholar
Shukla, V. B. 1944. On Sahnianthus, a new genus of petrified flowers from the Intertrappean beds at Mohgaonkalan in the Deccan and its relation with the fruit Enigmocarpon parijai Sahni, from the same locality. Proceedings of the National Academy of Sciences India, 14:139.Google Scholar
Singh, R. S., and Kar, R. 2002. Paleocene palynofossils from the Lalitpur intertrappean beds, Uttar Pradesh. Journal of the Geological Society of India, 60:213216.Google Scholar
Singh, R. S., Kar, R., and Prasad, G. V. R. 2006. Palynological constraints on the age of Deccan intertrappean beds of Naskal, Rangareddi district, Andhra Pradesh. Current Science, 90:12811285.Google Scholar
Smith, S. Y. 2013. The fossil record of non-commelinid monocots, p. 2959 In Wilkin, P. and Mayo, S. J. (eds.), Early Events in Monocot Evolution. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Spicer, R. A., and Collinson, M. E. 2014. Plants and floral change at the Cretaceous–Paleogene boundary: Three decades on, p. 117132 In Keller, G. and Kerr, A. C. (eds.), Volcanism, Impacts, and Mass Extinctions: Causes and Effects: Geological Society of America Special Paper 505.Google Scholar
Spicer, R. A., Valdes, P. J., Spicer, T. E. V., Craggs, H. J., Srivastava, G., Mehrotra, R. C., and Yang, J. 2009. New developments in CLAMP: Calibration using global gridded meteorological data. Palaeogeography, Palaeoclimatology, Palaeoecology, 283:9198.CrossRefGoogle Scholar
Srinivasan, S. 1996. Late Cretaceous egg shells from the Deccan volcanic sedimentary sequence of central India, p. 321336 In Sahni, A., and Rao, R. (eds.), Cretaceous Stratigraphy and Environment. Geological Society of India, Memoirs, 37.Google Scholar
Srivastava, R. 1991. A catalogue of fossil plants from India. Part 4. Cenozoic (Tertiary) megafossils. Birbal Sahni Institute of Palaeobotany, Lucknow.Google Scholar
Srivastava, R. 1996. Systematic anatomy of fossil woods in the Tertiary flora of India, p. 129138 In Donaldson, L. J., Singh, A. P., Butterfield, B. G., and Whitehouse, L. J. (eds.). Recent Advances in Wood Anatomy, New Zealand Forest Research Institute, Ltd. Google Scholar
Srivastava, R. 2011. Indian Upper Cretaceous–Tertiary flora before collision of Indian Plate: A reappraisal of central and western Indian flora. Memoir of the Geological Society of India, 77:281292.Google Scholar
Srivastava, R., and Guleria, J. S. 2006. A Catalogue of Cenozoic (Tertiary) Plant Megafossils from India (1989–2005). Diamond Jubilee Special Publication. Birbal Sahni Institute of Palaeobotany, Lucknow.Google Scholar
Srivastava, R., Wheeler, E. A., Manchester, S. R., and Baas, P. In Press. Wood of Oleaceae from the Paleocene of India – the earliest olive branch? IAWA Journal. Google Scholar
Stiles, C. A., Mora, C. I., and Driese, S. G. 2001. Pedogenic iron-manganese nodules in Vertisols: a new proxy for paleoprecipitation? Geology, 29:943946.2.0.CO;2>CrossRefGoogle Scholar
Stockey, R. A., and Rothwell, G. W. 2013. Pararaucaria carrii sp. nov., anatomically preserved evidence for the conifer family Cheirolepidiaceae in the Northern Hemisphere. International Journal of Plant Sciences, 174:445457.CrossRefGoogle Scholar
Strömberg, C. A. E. 2011. The origin and spread of grass-dominated habitats. Annual Review of Earth and Planetary Sciences, 39:517544.CrossRefGoogle Scholar
Subbarao, K. V., and Hooper, P. R. 1988. Reconnaissance map of the Deccan basalt group in the Western Ghats, India, p. 393. In Subbarao, K. V. (ed.), Deccan Flood Basalts. Journal of the Geological Society of India Mémoire, 10.Google Scholar
Subbarao, K. V., Sreenivasa Rao, M., Ramasubba Reddy, N., Prasad, C. V. R. K., and Hariharan, M. 1988a. Use of correlation coefficient patterns in chemical stratigraphy and petrology—a case study of the Deccan volcanics in parts of the Narmada Region, p. 99212 In Subbarao, K. V. (ed.), Deccan Flood Basalts. Journal of the Geological Society of India Mémoire, 10.Google Scholar
Subbarao, K. V., Bodas, M. S., Hooper, P. R., and Walsh, J. N. 1988b. Petrogenesis of Jawahar and Igatpuri Formations, western Deccan basalt province, p. 253280 In Subbarao, K. V. (ed.), Deccan Flood Basalts. Journal of the Geological Society of India Mémoire, 10.Google Scholar
Swenson, N. G., and Enquist, B. J. 2007. Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. American Journal of Botany, 94:451459.CrossRefGoogle ScholarPubMed
Tabor, N. J., Myers, T., Gulbrandon, E., Rasumussen, C., and Sheldon, N. D. 2013. Carbon stable isotope composition of modern calcareous soil profiles in California: implications for CO2 reconstructions from calcareous paleosols, p. 1734 In Driese, S. and Nordt, L. (eds.), New Frontiers in Paleopedology and Terrestrial Paleoclimatology, SEPM Special Paper 104. doi: 10.2110/sepmsp.104.07.CrossRefGoogle Scholar
Thomas, R., and Boura, A. 2015. Palm stem anatomy: phylogenetic or climatic signal? Botanical Journal of the Linnean Society, 178:467488.CrossRefGoogle Scholar
Thomas, R., and De Franceschi, D. 2013. Palm stem anatomy and computer-aided identification: the Coryphoideae (Arecaceae). American Journal of Botany, 100:289313.CrossRefGoogle Scholar
Trivedi, B. S., and Srivastava, R. 1981. A new species of Oleoxylon from the Deccan Intertrappean beds of Jheria, Chhindwara District, Madhya Pradesh. Biovigyanam, 7:8384.Google Scholar
Trivedi, B. S., and Srivastava, R. 1989. Gymnospermous woods from early Tertiary of Chhindwara District of Madhya Pradesh. Phytomorphology, 39:6168.Google Scholar
Vandamme, D., and Courtillot, V. 1992. Paleomagnetic constraints on the structure of the Deccan traps. Physics of the Earth and Planetary Interiors, 74:241261.CrossRefGoogle Scholar
Wheeler, E. A. 2011. InsideWood – a web resource for hardwood anatomy. IAWA Journal, 32:199212.Google Scholar
Wheeler, E., Baas, P., and Gasson, P. E. 1989. IAWA list of microscopic features for hardwood identification. IAWA Bulletin, new series, 10:219332.Google Scholar
Wheeler, E., Baas, P., and Rodgers, S. 2007. Variations in dicot wood anatomy: a global analysis based on the InsideWood database. IAWA Journal, 28:229258.CrossRefGoogle Scholar
White, R. W., and McKenzie, D. P. 1989. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. Journal of Geophysical Research, 94:76857772.CrossRefGoogle Scholar
Widdowson, M., Walsh, J. N., and Subbararo, K. V. 1997. The geochemistry of Indian bole horizons: palaeoenvironmental implications of Deccan intravolcanic palaeosurfaces, p. 269281 In Widdowson, M. (ed.), Palaeosurfaces: Recognition, Reconstruction and Palaeoenvironmental Interpretation: Geological Society of London Special Publication, 120.Google Scholar
Wilson, J. A., Mohabey, D. M., Peters, S. E., and Head, J. J. 2010. Predation upon hatchling dinosaurs by a new snake from the late Cretaceous of India. PLoS Biology, 8(3): 110.CrossRefGoogle Scholar
Wilson, J. A., Sereno, P., Srivastava, S., Bhatt, D. K., Khosla, A., and Sahni, A. 2003. A new abelisaurid (Dinosauria: Theropoda) from the Lameta Formation (Cretaceous, Maastrichtian) of India. Contributions from the Museum of Paleontology, University of Michigan, 31:142.Google Scholar
Wolfe, J. A. 1993. A method of obtaining climatic parameters from leaf assemblages. U.S. Geological Survey Bulletin 2040:173.Google Scholar
Yedekar, D. B., Aramaki, S., Fujii, T., and Sano, T. 1996. Geochemical signature and stratigraphy of Chhindwara-Jabalpur-Seoni-Mandla sector of the Eastern Deccan Volcanic province and problem of its correlation. Gondwana Geological Magazine, Special Volume, 2:4958.Google Scholar
Zhang, G.-L., Pan, J. -H., Huang, C. -M., and Gong, Z. -T. 2007. Geochemical features of a soil chronosequence developed on basalt in Hainan Island, China. Revista Mexicana de Ciencias Geológicos, 24:261269.Google Scholar
Zimmermann, M. H., and Tomlinson, P. B. 1965. Anatomy of the palm Rhapis excelsa, I. Mature vegetative axis. Journal of the Arnold Arboretum, 46:160178.Google Scholar
Cited by