Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-24T16:30:52.874Z Has data issue: false hasContentIssue false

Carbon isotope stratigraphy of the Neoproterozoic-Cambrian transition: An introduction

Published online by Cambridge University Press:  21 July 2017

Frank A. Corsetti*
Affiliation:
Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089-0740
Get access

Abstract

Carbonate units deposited during the Precambrian-Cambrian transition records a unique δ13C profile that is useful for chemostratigraphic correlation. However, the Precambrian-Cambrian boundary is currently defined within siliciclastic units where δ13C data are not available. The mixed siliciclastic-carbonate succession from the southern Great Basin, USA, records the appropriate fossils in the siliciclastic strata interbedded with carbonate strata that record the appropriate shifts in δ13C to facilitate correlation between the lithologic end-members. Ultimately, the integrated dataset demonstrates that vertical burrowing and the onset of widespread biomineralization was essentially synchronous.

Type
Research Article
Copyright
Copyright © 2004 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharon, P., Schidlowski, M., and Singh, I. B. 1987. Chronostratigraphic markers in the end-Precambrian carbon isotope record of the Lesser Himalaya. Nature, 327(6124):699702.Google Scholar
Amthor, J. E., Grotzinger, J. P., Schroeder, S., Bowring, S. A., Ramezani, J., Martin, M. W., and Matter, A. 2003. Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology, 31(5):431434.Google Scholar
Arthur, M. A., Anderson, T. F., Kaplan, I. R., Veizer, J., and Land, L. S. 1983. Stable isotopes in sedimentary geology: SEPM Short Course 10. SEPM, Tulsa, OK.Google Scholar
Banerjee, D. M., Schidlowski, M., Siebert, F., and Brasier, M. D. 1997. Geochemical changes across the Proterozoic-Cambrian transition in the Durmala phosphorite mine section, Mussoorie Hills, Garhwal Himalaya, India. Palaeogeography, Palaeoclimatology, Palaeoecology, 132(1-4): 183194.CrossRefGoogle Scholar
Banner, J. L., and Hanson, G. N. 1990. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochimica et Cosmochimica Acta, 54(11):31233137.Google Scholar
Barfod, G. H., Albarede, F., Knoll, A. H., Xiao, S., Telouk, P., Frei, R., and Baker, J. 2002. New Lu-Hf and Pb-Pb age constraints on the earliest animal fossils. Earth and Planetary Science Letters, 201(1):203212.Google Scholar
Bartley, J. K., Pope, M., Knoll, A. H., Semikhatov, M. A., and Petrov, P. Y. 1998. A Vendian-Cambrian boundary succession from the northwestern margin of the Siberian Platform; stratigraphy, palaeontology, chemostratigraphy and correlation. Geological Magazine, 135(4):473494.CrossRefGoogle ScholarPubMed
Berkner, L. V., and Marshall, L. C. 1966. Oxygen and evolution. New Scientist, 28(469):415419.Google Scholar
Boggs, S. Jr. 2001. Principles of sedimentology and stratigraphy (third edition). Prentice Hall, Upper Saddle River, New Jersey, 726 p.Google Scholar
Bond, G. C. 1997. New constraints on Rodinia breakup ages from revised tectonic subsidence curves. Geological Society of America Abstracts, 29:280.Google Scholar
Bond, G. C., Christie-Blick, N. H., Kominz, M. A., and Devlin, W. J. 1985. An Early Cambrian rift to post-rift transition in the Cordillera of western North America. Nature, 315(6022):742746.Google Scholar
Bowring, S. A., Grotzinger, J. P., Isachsen, C. E., Knoll, A. H., Pelechaty, S. M., and Kolosov, P. 1993. Calibrating rates of Early Cambrian evolution. Science, 261(5126):12931298.CrossRefGoogle ScholarPubMed
Bowring, S. A., Myrow, P. M., Landing, E., and Ramezani, J. 2003. Geochronological constraints on Neoproterozoic events and the rise of metazoans. Astrobiology, 2:112.Google Scholar
Brasier, M., Mccarron, G., Tucker, R., Leather, J., Allen, P. A., and Shields, G. 2000. New U-Pb zircon dates for the Neoproterozoic Ghubrah glaciation and for the top of the Huqf Supergroup, Oman. Geology, 28(2):175178.Google Scholar
Brasier, M. D. 1989. Towards a biostratigraphy of the earliest skeletal biotas, p. 117165. In Cowie, J. W. and Brasier, M. D. (eds.), The Precambrian-Cambrian boundary. Volume 12. Oxford University Press, Oxford.Google Scholar
Brasier, M. D., Anderson, M. M., and Corfield, R. M. 1992. Oxygen and carbon isotope stratigraphy of Early Cambrian carbonates in southeastern Newfoundland and England. Geological Magazine, 129(3):265279.Google Scholar
Brasier, M. D., Cowie, J. W., and Taylor, M. E. 1994. Decision on the Precambrian-Cambrian boundary stratotype. Episodes, 17:38.Google Scholar
Brasier, M. D., Dorjnamjaa, D., and Lindsay, J. F. 1996a. The Neoproterozoic to Early Cambrian in Southwest Mongolia; an introduction. Geological Magazine, 133(4):365369.Google Scholar
Brasier, M. D., Magaritz, M., Corfield, R., Luo, H., Wu, X., Ouyang, L., Jiang, Z., Hamdi, B., He, T., and Fraser, A. G. 1990. The carbon- and oxygen-isotope record of the Precambrian-Cambrian boundary interval in China and Iran and their correlation. Geological Magazine, 127(4):319332.Google Scholar
Brasier, M. D., Shields, G., Kuleshov, V. N., and Zhegallo, E. A. 1996b. Integrated chemo- and biostratigraphic calibration of early animal evolution; Neoproterozoic-Early Cambrian of Southwest Mongolia. Geological Magazine, 133(4):445485.Google Scholar
Brasier, M. D., and Sukhov, S. S. 1998. The falling amplitude of carbon isotopic oscillations through the Lower to Middle Cambrian; northern Siberia data, p. 353373. In Landing, E. (ed.), Third international field conference of the Cambrian chronostratigraphy working group. Volume 35. National Research Council of Canada.Google Scholar
Broecker, W. S., and Peng, T.-H. 1982. Tracers in the sea. Lamont-Doherty Geol. Obs., Palisades, NY, 690 p.Google Scholar
Burns, S. J., and Matter, A. 1993. Carbon isotopic record of the latest Proterozoic from Oman. Eclogae Geologicae Helvetiae, 86(2):595607.Google Scholar
Cloud, P. 1974. A working model of the primitive Earth, Stroudsburg, Pa. Google Scholar
Cooper, J. D., and Fedo, C. M. 1995. Base of the Sauk Sequence in the southern Great Basin and eastern Mojave Desert. Geological Society of America Abstracts, 27:331.Google Scholar
Corsetti, F. A. 1998. Regional correlation, age constraints, and geologic history of the Neoproterozoic-Cambrian strata, southern Great Basin, USA; integrated carbon isotope stratigraphy, biostratigraphy, and lithostratigraphy. Doctoral, University of California Santa Barbara, Santa Barbara, CA, 235 p.Google Scholar
Corsetti, F. A., Awramik, S. M., Pierce, D. L., and Kaufman, A. J. 2000. Using chemostratigraphy to correlate and calibrate unconformities in Neoproterozoic strata from the southern Great Basin of the United States. International Geology Review, 42(6):516533.Google Scholar
Corsetti, F. A., and Hagadorn, J. W. 2000. Precambrian-Cambrian transition; Death Valley, United States. Geology, 28(4):299302.Google Scholar
Corsetti, F. A., and Hagadorn, J. W. 2003. The Precambrian-Cambrian transition in the southern Great Basin, USA. The Sedimentary Record, 1(1):48.Google Scholar
Corsetti, F. A., and Kaufman, A. J. 1994. Chemostratigraphy of Neoproterozoic-Cambrian units, White-Inyo Region, eastern California and western Nevada; implications for global correlation and faunal distribution. Palaios, 9(2):211219.Google Scholar
Corsetti, F. A., and Kaufman, A. J. 2003. Stratigraphic investigations of carbon isotope anomalies and Neoproterozoic ice ages in Death Valley, California. GSA Bulletin, 115:916932.CrossRefGoogle Scholar
Cowie, J. W., and Brasier, M. D. 1989. The Precambrian-Cambrian boundary. Oxford University Press, Oxford, 213 p.Google Scholar
Diehl, P. E. 1974. Stratigraphy and Sedimentology of the Wood Canyon Formation, Death Valley Area, California, p. 3748, Guidebook; Death Valley Region, California and Nevada. Death Valley Publishing Co. Google Scholar
Diehl, P. E. 1979. The stratigraphy, depositional environments, and quantitative petrography of the Precambrian-Cambrian Wood Canyon Formation, Death Valley. Doctoral, Pennsylvania State University University Park, UNIVERSITY PARK, PA, 430 P.Google Scholar
Fanning, C. M., and Link, P. K. 2003. Late Sturtian U-Pb SHRIMP age for Neoproterozoic Diamictites of the Pocatello Formation, southeastern Idaho. Geological Society of America Abstracts, 34(7):389.Google Scholar
Fedo, C. M., and Cooper, J. D. 1990. Braided fluvial to marine transition; the basal Lower Cambrian Wood Canyon Formation, southern Marble Mountains, Mojave Desert, California. Journal of Sedimentary Petrology, 60(2):220234.Google Scholar
Fedo, C. M., and Cooper, J. D. 2001. Sedimentology and sequence stratigraphy of Neoproterozoic and Cambrian units across a craton-margin hinge zone, southeastern California, and implications for the early evolution of the Cordilleran margin. Sedimentary Geology, 141-142(6):501522.Google Scholar
Fedo, C. M., and Prave, A. R. 1991. Extensive Cambrian braidplain sedimentation; insights from the Southwestern U.S.A. Cordillera, p. 227235, Paleozoic paleogeography of the Western United States; II. SEPM Pacific Section Book 67.Google Scholar
Fritz, W. H. 1995. Esmeraldina rowei and associated Lower Cambrian trilobites (1f fauna) at the base of Walcott's Waucoban Series, southern Great Basin, U.S.A. Journal of Paleontology, 69(4):708723.Google Scholar
Grotzinger, J. P., Bowring, S. A., Saylor, B. Z., and Kaufman, A. J. 1995. Biostratigraphic and geochronologic constraints on early animal evolution. Science, 270(5236):598604.Google Scholar
Hagadorn, J. W. 1998. Restriction of a late Neoproterozoic biotope; Ediacaran faunas, microbial structures, and trace fossils from the Proterozoic-Phanerozoic transition, Great Basin, USA. Doctoral, University of Southern California, Los Angeles, CA, 198 p.Google Scholar
Hagadorn, J. W., and Bottjer, D. J. 1999. Restriction of a late Neoproterozoic biotope; suspect-microbial structures and trace fossils at the Vendian-Cambrian transition. Palaios, 14(1):7385.Google Scholar
Hagadorn, J. W., Fedo, C. M., and Waggoner, B. M. 2000. Early Cambrian Ediacaran-type fossils from California. Journal of Paleontology, 74(4):731740.Google Scholar
Hagadorn, J. W., and Waggoner, B. 2000. Ediacaran fossils from the southwestern Great Basin, United States. Journal of Paleontology, 74(2):349359.Google Scholar
Hayes, J. M. 1983. Geochemical evidence bearing on the origin of aerobiosis; a speculative hypothesis, p. 291301, In: Schopf, J. W. (ed.), Earth's earliest biosphere; its origin and evolution, Princeton Univ. Press, Princeton, NJ.Google Scholar
Hayes, J. M., Strauss, H., and Kaufman, A. J. 1999. The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chemical Geology, 161(1-3):103125.CrossRefGoogle Scholar
Hoffman, P. F., Kaufman, A. J., Halverson, G. P., and Schrag, D. P. 1998. A Neoproterozoic snowball Earth. Science, 281(5381):13421346.Google Scholar
Horodyski, R. J., Gehling, J. G., Jensen, S., and Runnegar, B. 1994. Ediacara fauna and earliest Cambrian trace fossils in a single parasequence set, southern Nevada. Geological Society of America Abstracts, 26:60.Google Scholar
Jensen, S., and Grant, S. W. F. 1998. Trace fossils from the Dividalen Group, northern Sweden; implications for Early Cambrian biostratigraphy of Baltica. Norsk Geologisk Tidsskrift, 78(4):305317.Google Scholar
Karlstrom, K. E., Bowring, S. A., Dehler, C. M., Knoll, A. H., Porter, S. M., Des Marais, D. J., Weil, A. B., Sharp, Z. D., Geissman, J. W., Elrick, M. B., Timmons, J. M., Crossey, L. J., and Davidek, K. L. 2000. Chuar Group of the Grand Canyon; record of breakup of Rodinia, associated change in the global carbon cycle, and ecosystem expansion by 740 Ma. Geology, 28(7):619622.Google Scholar
Kaufman, A. J., and Knoll, A. H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater; stratigraphic and biogeochemical implications. Precambrian Research, 73(1-4):2749.Google Scholar
Kaufman, A. J., Knoll, A. H., and Narbonne, G.M. 1997. Isotopes, ice ages, and terminal Proterozoic Earth history. Proceedings of the National Academy of Sciences (USA), 94:66006605.Google Scholar
Kimura, H., Matsumoto, R., Kakuwa, Y., Hamdi, B., and Zibaseresht, H. 1997. The Vendian-Cambrian δ13X record, North Iran; evidence for overturning of the ocean before the Cambrian explosion. Earth and Planetary Science Letters, 147(1-4):17.Google Scholar
Kirschvink, J. L., Magaritz, M., Ripperdan, R. L., Zhuravlev, A. Y., and Rozanov, A. Y. 1991. The Precambrian/Cambrian boundary; magnetostratigraphy and carbon isotopes resolve correlation problems between Siberia, Morocco, and South China. GSA Today, 1(4):6974, 87, 91.Google Scholar
Kirschvink, J. L., and Raub, T. D. 2003. A methane fuse for the Cambrian explosion; carbon cycles and true polar wander. The Earth's dynamics, 335(1):6578.Google Scholar
Knoll, A. H. 1992. Biological and biogeochemical preludes to the Ediacaran radiation, p. 5384. In Lipps, J. H. and Signor, P. W. (eds.), Origin and early evolution of the Metazoa. Plenum Press, New York.Google Scholar
Knoll, A. H. 2000. Learning to tell Neoproterozoic time. Precambrian Research, 100(1-3):320.Google Scholar
Knoll, A. H., and Carroll, S. B. 1999. Early animal evolution; emerging views from comparative biology and geology. Science, 284(5423):21292137.Google Scholar
Knoll, A. H., Grotzinger, J. P., Kaufman, A. J., and Kolosov, P. 1995a. Integrated approaches to terminal Proterozoic stratigraphy: an example from the Olenek Uplift, northeastern Siberia. Precambrian Research, 73(1-4):251270.Google Scholar
Knoll, A. H., Hayes, J. M., Kaufman, A. J., Swett, K., and Lambert, I. B. 1986. Secular variation in carbon isotope ratios from upper Proterozoic successions of Svalbard and East Greenland. Nature, 321(6073):832838.Google Scholar
Knoll, A. H., Kaufman, A. J., Semikhatov, M. A., Grotzinger, J. P., and Adams, W. 1995b. Sizing up the sub-Tommotian unconformity in Siberia. Geology, 23(12):11391143.Google Scholar
Knoll, A. H., and Walter, M. 1995. Neoproterozoic stratigraphy and Earth history, Precambrian Research, 73(1-4)1298 p.Google Scholar
Knoll, A. H., and Walter, M. R. 1992. Latest Proterozoic stratigraphy and Earth history. Nature, 356(6371):673677.Google Scholar
Kump, L. R., and Arthur, M. A. 1999. Interpreting carbon-isotope excursions; carbonates and organic matter. Chemical Geology, 161(1-3): 181198.CrossRefGoogle Scholar
Lambert, I. B., Walter, M. R., Zang, W., Songnian, L., and Guogan, M. 1987. Palaeoenvironment and carbon isotope stratigraphy of upper Proterozoic carbonates of the Yangtze Platform. Nature, 325(6101): 140142.Google Scholar
Latham, A., and Riding, R. 1990. Fossil evidence for the location of the Precambrian/Cambrian boundary in Morocco. Nature, 344(6268):752754.CrossRefGoogle Scholar
Levy, M., and Christie-Blick, N. 1991. Tectonic subsidence of the early Paleozoic passive continental margin in eastern California and southern Nevada. Geological Society of America Bulletin, 103(12):15901606.Google Scholar
Lorentz, N. J., Corsetti, F. A., and Link, P. K. 2004. Seafloor precipitates and C-isotope stratigraphy from the Neoproterozoic Scout Mountain Member of the Pocatello Formation, southeast Idaho: implications for Neoproterozoic earth system behavior. Precambrian Research, 130:5770.CrossRefGoogle Scholar
Lund, K., Aleinikoff, J. N., Evans, K. V., and Fanning, C. M. 2003. SHRIMP U-Pb geochronology of Neoproterozoic Windermere Supergroup, central Idaho; implications for rifting of western Laurentia and synchroneity of Sturtian glacial deposits. Geological Society of America Bulletin, 115(3):349372.Google Scholar
Magaritz, M., Holser, W. T., and Kirschvink, J. L. 1986. Carbon-isotope events across the Precambrian/Cambrian boundary on the Siberian Platform. Nature, 320(6059):258259.Google Scholar
Magaritz, M., Kirschvink, J. L., Latham, A. J., Zhuravlev, A. Y., and Rozanov, A. Y. 1991. Precambrian/Cambrian boundary problem; carbon isotope correlations for Vendian and Tommotian time between Siberia and Morocco. Geology, 19(8):847850.Google Scholar
Mount, J. F., Hunt, D. L., Greene, L. R., and Dienger, J. 1991. Depositional systems, biostratigraphy and sequence stratigraphy of Lower Cambrian Grand Cycles, southwestern Great Basin, p. 209226. In Cooper, J. D. and Stevens, C. (eds.), Paleozoic paleogeography of the Western United States; II. SEPM Pacific Section Book 67.Google Scholar
Narbonne, G. M., Kaufman, A. J., and Knoll, A. H. 1994. Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, northwestern Canada; implications for Neoproterozoic correlations and the early evolution of animals. Geological Society of America Bulletin, 106(10): 12811292.Google Scholar
Narbonne, G. M., Myrow, P. M., Landing, E., and Anderson, M. M. 1987. A candidate stratotype for the Precambrian-Cambrian boundary, Fortune Head, Burin Peninsula, southeastern Newfoundland. Canadian Journal of Earth Sciences, 24(7):12771293.Google Scholar
Nelson, C. A. 1962. Lower Cambrian-Precambrian succession, White-Inyo Mountains, California. Geological Society of America Bulletin, 73(1):139144.Google Scholar
Nelson, C. A. 1978. Late Precambrian-Early Cambrian stratigraphic and faunal succession of eastern California and the Precambrian-Cambrian boundary. Geologic Magazine, 115:121126.Google Scholar
Oliver, L., and Rowland, S. M. 2002. Microbialite reefs at the close of the Proterozoic Eon: The Middle Member Deep Spring Formation at Mt. Dunfee, Nevada, p. 97122. In Corsetti, F. A. (ed.), Proterozoic-Cambrian of the Great Basin and Beyond. SEPM Pacific Section Book 93, Fullerton, California.Google Scholar
Palmer, A. R. 1981. Subdivision of the Sauk Sequence, p. 160162. In Taylor, M. E. (ed.), Second international symposium on the Cambrian System. U. S. Geological Survey.Google Scholar
Palmer, A. R. 1998. A proposed nomenclature for stages and series for the Cambrian of Laurentia, p. 323328. In Landing, E. (ed.), Third international field conference of the Cambrian chronostratigraphy working group. Volume 35. National Research Council of Canada.Google Scholar
Pelechaty, S. M., Grotzinger, J. P., Kashirtsev, V. A., and Zhernovsky, V. P. 1996a. Chemostratigraphic and sequence stratigraphic constraints on Vendian-Cambrian basin dynamics, Northeast Siberian Craton. Journal of Geology, 104(5):543563.Google Scholar
Pelechaty, S. M., Kaufman, A. J., and Grotzinger, J. P. 1996b. Evaluation of δ13X chemostratigraphy for intrabasinal correlation; Vendian strata of Northeast Siberia. Geological Society of America Bulletin, 108(8):9921003.Google Scholar
Ripperdan, R. L. 1994. Global variations in carbon isotope composition during the latest Neoproterozoic and earliest Cambrian. Annual Review of Earth and Planetary Sciences, 22:385417.Google Scholar
Rothman, D. H., Hayes, J. M., and Summons, R. E. 2003. Dynamics of the Neoproterozoic carbon cycle. Proceedings of the National Academy of Sciences (USA), 100(14):81248129.Google Scholar
Runnegar, B., Gehling, J. G., Horodyski, R. J., Jensen, S., and Knauth, L. P. 1995. Base of the Sauk Sequence is a global eustatic event that lies just above the Precambrian-Cambrian boundary, Geological Society of America abstracts, 27:330.Google Scholar
Shen, Y., and Schidlowski, M. 2000. New C isotope stratigraphy from Southwest China; implications for the placement of the Precambrian-Cambrian boundary on the Yangtze Platform and global correlations. Geology, 28(7):623626.Google Scholar
Shields, G. 1999. Working towards a new stratigraphic calibration scheme for the Neoproterozoic-Cambrian. Eclogae Geologicae Helvetiae, 92:221233.Google Scholar
Shields, G., Stille, P., Brasier, M. D., and Atudorei, N.-V. 1997. Stratified oceans and oxygenation of the late Precambrian environment; a post glacial geochemical record from the Neoproterozoic of W. Mongolia. Terra Nova, 9(5-6):218222.Google Scholar
Stewart, J. H. 1966. Correlation of Lower Cambrian and some Precambrian strata in the southern Great Basin, California and Nevada. USGS Research 1966:C66C72.Google Scholar
Stewart, J. H. 1970. Upper Precambrian and Lower Cambrian strata in the southern Great Basin, California and Nevada, USGS Professional Paper 620. U. S. Geological Survey, Reston, VA.Google Scholar
Stewart, J. H. 1982. Regional relations of Proterozoic Z and Lower Cambrian rocks in the Western United States and northern Mexico, p. 171180. In Cooper, J. D., Troxel, B. W., and Wright, L. A. (eds.), Geology of selected areas in the San Bernardino Mountains, western Mojave Desert, and southern Great Basin, California, Geological Society of America Codilleran Section Volume and Guidebook. Death Valley Publ. Co, Shoshone, CA.Google Scholar
Stewart, J. H., and Poole, F. G. 1974. Lower Paleozoic and uppermost Precambrian Cordilleran Miogeocline, Great Basin, western United States, p. 2857, Tectonics and Sedimentation, Special Publication - Society of Economic Paleontologists and Mineralogists. Volume 22.Google Scholar
Stewart, J. H., and Suczek, C. A. 1977. Cambrian and latest Precambrian paleogeography and tectonics in the western United States, p. 117. In Stewart, J. H., Stevens, C. H., and Fritsche, A. E. (eds.), Paleozoic paleogeography of the western United States:. SEPM Pacific Section Book 7.Google Scholar
Tucker, M. E. 1986. Carbon isotope excursions in Precambrian/Cambrian boundary beds, Morocco. Nature, 319(6048):4850.Google Scholar
Tucker, M. E., Wright, V. P., and Dickson, J. A. D. 1990. Carbonate sedimentology. Blackwell Sci. Publ., Oxford, 482 p.CrossRefGoogle Scholar
Walter, M. R., Veevers, J. J., Calver, C. R., Gorjan, P., and Hill, A. C. 2000. Dating the 840-544 Ma Neoproterozoic interval by isotopes of strontium, carbon, sulfur in seawater, and some interpretative models. Precambrian Research, 100(1-3):371433.Google Scholar
Whiticar, M. J. 1994. Correlation of natural gases with their sources, p. 261283. In Magoon, L.B. and Dow, W.G. (eds.). The petroleum system; from source to trap, AAPG Memoir 60, AAPG, Tulsa OK.Google Scholar