Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-28T10:42:54.028Z Has data issue: false hasContentIssue false

Wall shear stress in a laminar flow through a collapsed tube with wall contact

Published online by Cambridge University Press:  14 September 2005

S. Naili*
Affiliation:
Laboratoire de Mécanique Physique, CNRS UMR 7052 B2OA, Faculté des Sciences et Technologie, Université Paris XII–Val-de-Marne, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France
M. Thiriet
Affiliation:
Laboratoire Jacques-Louis Lions, CNRS UMR 7598, Université Pierre et Marie Curie, 75252 Paris Cedex 05, France, and Inria, action REO, BP 105, 78153 Le Chesnay Cedex, France
C. Ribreau
Affiliation:
Laboratoire de Mécanique Physique, CNRS UMR 7052 B2OA, Faculté des Sciences et Technologie, Université Paris XII–Val-de-Marne, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France
Get access

Abstract

The present work aims at studying mainly the wall shear stress of a laminar steady flow of an incompressible Newtonian fluid which is conveyed through a collapsed tube with a straight centreline. This tube is composed of a tapered segment, a contact segment where the opposite walls touch and a reopening segment. The tube geometry and steady flow characteristics are obtained from measurements in a collapsed tube. The Navier-Stokes equations associated with the classical boundary conditions are solved using the finite element method. The tridimensional flow results from the tube configuration. In particular, the flow consists of two side-jets due to two tear-drop shaped outer passages in the downstream contact segment associated with reversed flow. In order to compute both the stream-wise and cross-wise components of the shear stress on the wall, a local basis is defined in each wall node. Downstream of the contact segment, flow is separated in two jets which are studied though the help of the velocity field and the wall shear stress.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdul Nour, A., Cannon, R., Jaffrin, M.Y., Innov. Tech. Biol. Med. 10, 133 (1989)
Dion, B., Naili, S., Renaudeaux, J.P., Ribreau, C., Med. Biol. Eng. Comput. 33, 196 (1995) CrossRef
Dion, B., Naili, S., Renaudeaux, J.P., Ribreau, C., Med. Biol. Eng. Comput. 33, 838 (1995)
Vischer, D., Peter, P., La Houille Blanche 2, 123 (1985) CrossRef
Knowlton, F.P., Starling, E.H., J. Physiol. 44, 206 (1912) CrossRef
Oates, G.C., Med. Biol. Eng. 13, 773 (1975) CrossRef
Comolet, R., Acad, C. R.. Sci. Paris, Série B 283, 41 (1976)
Shapiro, A.H., J. Biomech. Eng.-T. ASME 99, 126 (1977) CrossRef
M. Thiriet, S. Naili, A. Langlet, C. Ribreau, Modelling of thin walled tubes with a flowing fluid and their applications in the study of the collapse of anatomic vessels, edited by C. Leondes, Biomechanical Systems: Techniques and Applications, volume IV of Biofluid Methods in Vascular and Pulmonary Systems (CRC Press, 2001), Chap. 10, pp. 1–43
Pedley, T.J., J. Biomech. Eng.-T. ASME 114, 60 (1992) CrossRef
M. Heil, O.E. Jensen, Flows in deformable tubes and channels – theoretical models and biological applications, edited by T.J. Pedley, P.W. Carpenter, Flow in Collapsible Tubes and Past Other Highly Compliant Boundaries, (Kluwer, Dordrecht, Netherlands, 2003), Chap. 2, pp. 15–50.
Heil, M., Pedley, T.J., J. Fluid. Struct. 9, 237 (1995) CrossRef
Hazel, A.L., Heil, M., J. Fluid Mech. 486, 79 (2003) CrossRef
M. Benmbarek, Écoulement laminaire permanent dans un modèle de veine, Ph.D. thesis, Université Paris XII, 1997
Thiriet, M., Ribreau, C., Mec. Ind. 1, 349 (2000)
Haond, C., Ribreau, C., Boutherin-Falson, O., Finet, M., Eur. Phys. J. Appl. Phys. 8, 87 (1999) CrossRef
Naili, S., Thiriet, M., Ribreau, C., Eur. Phys. J. Appl. Phys. 17, 139 (2002) CrossRef
M. Thiriet, S. Naili, C. Ribreau, Comput. Modeling Eng. Sci. 3, 4, 473 (2003)
Bassez, S., Flaud, P., Chauveau, M., J. Biomech. Eng.-T. ASME 123, 58 (2001) CrossRef
Bertram, C.D., Ribreau, C., Med. Biol. Eng. Comput. 27, 357 (1989) CrossRef
C. Ribreau, S. Naili, M. Bonis, A. Langlet. J. Biomech. Eng.-T. ASME 115, 4(A), 432 (1993)
O. Pironneau, The finite element methods for fluids (John Wiley & Sons, 1989)
M.D. Gunzburger, Navier-stokes equations for incompressible flows: finite element methods. edited by R. Peyret, Handbook of computational fluid mechanics (Academic Press, 1996), Chap. 3, pp. 99–157
Project GAMMA. Automatic mesh generation and adaptation methods, inria (france), 2003. Web page http://www.inria.fr/recherche/equipes/gamma.en.html
TetMesh-GHS3D, Simulog (France), 1993
R. Glowinski, Numerical methods for nonlinear variational problems (Springer-Verlag, New York, 1984)
K. Boukir, Y. Maday, B. Metivet, A high order characteristics method for incompressible navier-stokes equations. in Proceedings of International Conference on Spectral and High Order Method, Montpellier (France), June, 1992
Pironneau, O., Numer. Math. 38, 309 (1982) CrossRef
M. Thiriet, Étude des écoulements dans les voies respiratoires intrathoraciques proximales et les artères de gros calibre de la circulation systémique, Ph.D. thesis, Habilitation à Diriger des Recherches, Université Denis Diderot, 1994
Bertram, C.D., Godbole, S.A., J. Biomech. Eng.-T. ASME 119, 357 (1997) CrossRef
Ribreau, C., Naili, S., Langlet, A., J. Fluid. Struct. 8, 183 (1994) CrossRef