Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-25T02:09:53.427Z Has data issue: false hasContentIssue false

Very-near-field plume simulation of a stationary plasma thruster

Published online by Cambridge University Press:  25 June 2004

F. Taccogna*
Affiliation:
Dipartimento di Chimica dell'Università degli Studi di Bari and IMIP-CNR, Sect. Bari, via Orabona 4, 70126 Bari, Italy
S. Longo
Affiliation:
Dipartimento di Chimica dell'Università degli Studi di Bari and IMIP-CNR, Sect. Bari, via Orabona 4, 70126 Bari, Italy
M. Capitelli
Affiliation:
Dipartimento di Chimica dell'Università degli Studi di Bari and IMIP-CNR, Sect. Bari, via Orabona 4, 70126 Bari, Italy
Get access

Abstract

The plasmadynamics of a stationary plasma thruster (SPT-100) plume in the very-near-field region have been studied by using a two-dimensional axisymmetric numerical code based on a combination of Particle-in-Cell (PIC) simulation for ion component (Xe+ and Xe++) and fluid description for electrons. In particular we have solved the electron momentum conservation equation (including collisional and magnetic effects) and the electron energy conservation equation (including collisional effects). Due to the difference between electron and ion Larmor radius and to the effect of the thruster wall, the quasi-neutrality hypothesis can be violated in the very-near-field plume region and the electric field must be computed accordingly. The xenon atom flowfield is calculated analytically. The model allows a unitary rationalization of several experimental observations.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhurin, V.V., Kaufman, H.R., Robinson, R.S., Plasma Sources Sci. Technol. 8, R1 (1999) CrossRef
Bouchoule, A. et al., Plasma Sources Sci. Technol. 10, 364 (2001) CrossRef
M. Hirakawa, Y. Arakawa, IEPC paper 95-164 (1995)
J.M. Fife, M. Martinez-Sanchez, IEPC paper 95-240 (1995)
Garrigues, L., Heron, A., Adam, J.C., Boeuf, J.P., Plasma Sources Sci. Technol. 9, 219 (2000) CrossRef
M.S. Rhee, M.J. Lewis, AIAA paper 95-2928 (1995)
D.Y. Oh, D.E. Hastings, C.M. Marrese, J.M. Haas, A.D. Gallimore, J. Prop. Pow. 15, 345 (1999)
Boyd, I.D., Keidar, M., J. Appl. Phys. 86, 4786 (1999)
Boyd, I.D., VanGilder, D.B., Keidar, M., J. Spac. Rock. 37, 129 (2000)
C. Perot et al., AIAA paper 99-2716 (1999)
F. Taccogna, S. Longo, M. Capitelli, AIAA paper 2000-2345 (2000)
Taccogna, F., Longo, S., Capitelli, M., J. Spac. Rock. 39, 409 (2002) CrossRef
J.W. Koo et al., AIAA paper 2001-3321 (2001)
J.W. Eastwood, R.W. Hockney, Computer Simulation Using Particles (McGraw-Hill, New York, 1981)
C.K. Birdsall, A.B. Langdon, Plasma Physics Via Computer Simulation (McGraw-Hill, New York, 1985)
Nanbu, K., Kitatani, Y., J. Phys. D: Appl. Phys. 28, 324 (1995) CrossRef
K. Mitsui, Private communication (1999)
L. Boccaletto et al., Final Report in Estec contract n.12736/97/NL/PA, Advanced prediction methods for plume flow WP-3 (1999)
S. Kim, J.E. Foster, A.D. Gallimore, AIAA paper 96-2972 (1996)
S. Kim, Ph.D. thesis, University of Michigan (1998)
A.M. Bishaev, V.P. Kim, Sov. Phys. Tech. Phys. 23, 1055 (1978)
King, L.B., Gallimore, A.D., Marrese, C.M., J. Prop. Pow. 14, 327 (1998) CrossRef
G. Colonna, M. Capitelli, Final Report in Estec contract n.12736/97/NL/PA, Advanced prediction methods for plume flow, WP-5.2 (1997)
G. Colonna, L.D. Pietanza, M. Capitelli, AIAA Paper 2000-2349 (2000)
Ruyten, W.M., J. Comp. Phys. 105, 224 (1993) CrossRef
I.D. Boyd, AIAA paper 2000-0466 (2000)
R. Samanta Roy, Ph.D. thesis, MIT (1995)