Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-08T19:51:38.789Z Has data issue: false hasContentIssue false

Vacuum annealing temperature on spray In2S3 layers

Published online by Cambridge University Press:  14 February 2014

Nourredine Bouguila
Affiliation:
Laboratoire de Physique des Matériaux et des Nanomatériaux appliquée à l’environnement, Université de Gabès, Faculté des Sciences de Gabès, Cité Erriadh Manara Zrig 6072 Gabès, Tunisie
Abdelmajid Timoumi*
Affiliation:
LPMS, Département de Génie Industriel, Ecole Nationale d’Ingénieurs de Tunis, PB 37, Le Belvédère 1002, Tunisie Faculty of Applied Sciences, Department of Physics, Umm AL-Qura University, Saudi Arabia, KSA
Hassen Bouzouita
Affiliation:
LPMS, Département de Génie Industriel, Ecole Nationale d’Ingénieurs de Tunis, PB 37, Le Belvédère 1002, Tunisie
Get access

Abstract

Indium sulfide In2S3 thick films are deposited on glass substrates using spray technique over the optimum conditions experiments (Ts = 340 °C, S/In = 2). The films are polycrystalline and have thickness of about 1.8 μm. These films are annealed in a vacuum sealed pyrex tubes (10−5 torr). Physico-chemical characterizations by SEM observation, X-ray diffraction and EDX analysis are undertaked on these films. This treatment has improved crystallinity of samples. It has allowed thus to stabilize β and γ varieties of In2S3 material. In2O3 and In6S7 phases have appeared with very weak intensities at high temperatures. The best structure quality are obtained at 300 °C for the optimum annealed temperature (Ts = 340 °C, S/In = 2), for which samples are constituted in dominance by γ phase oriented preferentially towards (1 0 2). The grain size is 42 nm of this phase. Chemical composition of such films has changed relatively to non-treated film but it seems not be affected by treatment temperature. Atomic molar ratio S/In is obtained for 0.9. Optical study shows that these layers are transparent in the visible and optical direct band gap increases as function of annealed temperature.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Newman, P.C., J. Phys. Chem. Solids 23, 19 (1961)CrossRef
Diehl, H., Nitsche, R., J. Cryst. Growth 28, 306 (1975)CrossRef
Medvedeva, Z.S., Chalcogenides of Elements of Subgroups IIIB (Nauka, Moscow, 1968), [in Russian] Google Scholar
Becker, R.S., Zheng, T., Elton, J., Saeki, M., Sol. Energy Mater. 13, 97 (1986)CrossRef
Dalas, E., Sakkopoulos, S., Vitoratos, E., Maroulis, G., J. Mater. Sci. 28, 5456 (1993)CrossRef
Sysoev, B.I., Bezryadin, N.N., Budanov, A.V., Prokopovo, T.V., Agapov, B.L., 31, 817 (1995)
Asikainen, T., Ritala, M., Leskela, M., Appl. Surf. Sci. 82/83, 122 (1994)CrossRef
Bube, R.H., McCarrol, W., J. Phys. Chem. Solids 10, 333 (1959)CrossRef
Gilles, J.M., Hatwell, H., Offergeld, G., Van Cakenberghe, J., Phys. Status Solidi 2, K73 (1962)CrossRef
Garlick, G.F., Sspringford, M., Chesinska, H., Proc. Phys. Soc. 82, 16 (1963)CrossRef
Rosetti, R., Nakahare, S., Brus, L.E., J. Chem. Phys. 79, 1086.(1983)CrossRef
Williams, F., Nozik, A.J., Nature 311, 21 (1984)CrossRef
Miyoshi, H., Yamachika, M., Yoneyama, H., Mori, A., J. Chem. Soc. Faraday Trans. 86, 815 (1990)CrossRef
Timoumi, A., Bouzouita, H., Kanzari, M., Rezig, B., Thin Solid Films 480–481, 124 (2005)CrossRef
Bessergenev, V.G., Ivanova, E.N., Kovalevskaya, Y.A., Gromilov, S.A., Kirichenko, V.N., Larionov, S.V., Inorg. Mater. 32, 592 (1996)
Aliev, F.I., Efendiev, E.G., Org. Mater. 13, 728 (1977)
George, J., Joseph, K.S., Pradeep, B., Palson, T.I., Phys. Status Solidi A 106, 123 (1988)CrossRef
Otto, K., Katerski, A., Mere, A., Volobujeva, O., Krunks, M., Thin Solid Films 519, 3055 (2011)CrossRef
Kamoun, N., Belgacem, S., Amlouk, M., Bennaceur, R., Abdelmoula, K., Belhadj Amara, A., J. Phys. III (France) 4, 473 (1994)CrossRef
Asikainen, T., Ritala, M., Leskela, M., Appl. Surf. Sci. 82/83, 122 (1994)CrossRef
Herrasti, P., Fatas, E., J. Mater. Sci. 25, 3535 (1990)CrossRef
Herroro, J., Ortega, J., Sol. Energy Mater. 17, 357 (1988)CrossRef
Kitaev, G.A., Dvoinin, V.I., Ust’yantseva, A.V., Belyaeva, M.N., Skornyakov, L.G., Izvestia Akademii Nauk SSR, Neorganicheskie Materialy 12, 1760 (1976)
Yahmadi, B., Kamoun, N., Guasch, C., Bennaceur, R., Mater. Chem. Phys.. 127, 239 (2011)CrossRef
Barreau, N., Sol. Energy 83, 363 (2009)CrossRef
Sahu, S.N., Padhi, H.C., Mater. Sci. Lett. 12, 1013 (1993)CrossRef
John, T.T., Bini, S., Kashiwaba, Y., Abe, T., Yasuhiro, Y., Sudha Kartha, C., Vijayakumar, K.P., Semicond. Sci. Technol. 18, 491 (2003)CrossRef
Sanz, C., Guillen, C., Herrero, J., Semicond. Sci. Technol. 28, 015004 (2013)CrossRef
Oztas, M., Bedir, M., Ozturk, Z., Korkmaz, D., Sur, S., Chin. Phys. Lett. 23, 1610 (2006)CrossRef
Herrasti, P., Fatas, E., J. Mater. Sci. 25, 3535 (1990)CrossRef
Gopinath, G.R., Revathi, N., Uthanna, S., Ramakrishna Reddy, K.T., AIP Conf. Proc. 1447, 635 (2012)CrossRef
George, J., Joseph, K.S., Pradeep, B., Palson, T.I., Phys. Status Solidi A 106, 123 (1988)CrossRef
Krunks, M., Bijakina, O., Varema, T., Mikli, V., Mellikov, E., Thin Solid Films 338, 125 (1999)CrossRef