Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-22T12:59:21.610Z Has data issue: false hasContentIssue false

The use of chemical vapor etching in multicrystalline silicon solar cells

Published online by Cambridge University Press:  07 May 2009

M. Ben Rabha*
Affiliation:
Centre de Recherches et des Technologies de l'Énergie – Technopole de Borj-Cédria, Laboratoire de Nanomatériaux et des Systèmes pour l'Énergie, BP 95, 2050 Hammam-Lif, Tunisia
M. F. Boujmil
Affiliation:
Centre de Recherches et des Technologies de l'Énergie – Technopole de Borj-Cédria, Laboratoire de Nanomatériaux et des Systèmes pour l'Énergie, BP 95, 2050 Hammam-Lif, Tunisia
M. Saadoun
Affiliation:
Centre de Recherches et des Technologies de l'Énergie – Technopole de Borj-Cédria, Laboratoire de Nanomatériaux et des Systèmes pour l'Énergie, BP 95, 2050 Hammam-Lif, Tunisia
B. Bessaïs
Affiliation:
Centre de Recherches et des Technologies de l'Énergie – Technopole de Borj-Cédria, Laboratoire de Nanomatériaux et des Systèmes pour l'Énergie, BP 95, 2050 Hammam-Lif, Tunisia
Get access

Abstract

With the purpose to increase the light confinement and the efficiency of silicon solar cells, the reflection of the surface emitter needs to be minimized and the minority carrier collection improved. This improvement is currently achieved by the application of the chemical vapor etching (CVE) technique. In this paper, we investigate the effects of CVE on surface texturing and silicon grooving. CVE-based porous silicon (PS) was found to be a good antireflection and passivation layer for multicrystalline Si (mc-Si) solar cells. As a result, the reflectivity of the mc-Si solar cell decreases by about 60% of its initial value in the 650–950 nm spectral range and the internal quantum efficiency improves by 30% after PS application in the 400–700 nm spectral range. CVE can be used for surface texturing of single or mc-Si Si wafer leading to lower surface reflectivity and reduction of the dead layer. The chemical vapor etching techniques enabled realize buried metallic contacts by grooving mc-Si silicon wafers. The spectral response of mc-Si solar cells was found to enhance of about 12% in the long wavelength range when a rear buried metallic contacts is achieved, while a significant increase of about 35% was observed at short wavelengths (400–650 nm spectral range) subsequent front grid buried metallic contacts realization.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Green, M.A., Sol. Energy 74, 181 (2003) CrossRef
S. Rein, W. Warta, S.W. Glunz, in Proc. 28th IEEE Photovoltaic Specialists Conf. (PVSC), Anchorage, AK, USA, 2000, pp. 57–60
M.A. Green, Silicon Solar Cells, Advanced Principles and Practice (Bridge Printery, Sydney, 1995)
Zheng, J.P., Charbel, P.T., Microelectron. Eng. 66, 224 (2003) CrossRef
Majumdar, D., Chatterjee, S., Dhar, M., Dutta, S.K., Saha, H., Sol. Energy Mater. Sol. Cells 77, 51 (2003) CrossRef
Pirozzi, L., Arabito, G., Artuso, F., Barbarossa, V., Besi-Vetrella, U., Loreti, S., Mangiapane, P., Salza, E., Sol. Energy Mater. Sol. Cells 65, 287 (2001) CrossRef
Zhao, Y., Li, Z., Mo, C., He, S., Li, Z., Yu, Y., Chen, Z., Sol. Energy Mater. Sol. Cells 48, 167 (1997)
Saadoun, M., Mliki, N., Kaabi, H., Daoudi, K., Bessaïs, B., Ezzaouia, H., Bennaceur, R., Thin Solid Films 405, 29 (2002) CrossRef
Dimassi, W., Bouaïcha, M., Saadoun, M., Bessaïs, B., Ezzaouia, H., Bennaceur, R., Nucl. Instrum. Meth. Phys. Res. B 186, 441 (2002) CrossRef
Saadoun, M., Bessaïs, B., Mliki, N., Ferid, M., Ezzaouia, H., Bennaceur, R., Appl. Surf. Sci. 210, 240 (2003) CrossRef
M. Ben Rabha, M. Saadoun, M.F. Boujmil, B. Bessaïs, H. Ezzaouia, R. Bennaceur, Appl. Surf. Sci. 252/2, 488 (2005)
Krotkus, A., Grigoras, K., Pacebutas, V., Barsony, I., Vazsonyi, E., Fried, M., Szlafcik, J., Nijs, J., Lévy-Clément, C., Sol. Energy Mater. Sol. Cells 45, 267 (1997) CrossRef