Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T18:50:35.334Z Has data issue: false hasContentIssue false

Ultra-compact spatial filtering with both wide spatial-frequency bandwidth and high transmittance using single-negative material

Published online by Cambridge University Press:  17 June 2010

Y.-T. Fang*
Affiliation:
Department of Physics, Zhenjiang Watercraft College, 212003, Zhenjiang, P.R. China THz-Technology Research Center of Shenzhen University, Shenzhen, 518060, P.R. China
Z.-B. Ouyang
Affiliation:
THz-Technology Research Center of Shenzhen University, Shenzhen, 518060, P.R. China Shenzhen Key Laboratory of Micro-Nano-Photonic Information Technology, Shenzhen, 518060, P.R. China College of Electronic Science and Technology of Shenzhen University, Shenzhen, 518060, P.R. China
G. Qiu
Affiliation:
THz-Technology Research Center of Shenzhen University, Shenzhen, 518060, P.R. China Shenzhen Key Laboratory of Micro-Nano-Photonic Information Technology, Shenzhen, 518060, P.R. China College of Electronic Science and Technology of Shenzhen University, Shenzhen, 518060, P.R. China
Get access

Abstract

A new application of multilayer structures containing single-negative material is proposed as spatial filter. The spatial filter has an ultra-compact structure (only two periods) and is based on that the transmittance of waves through the structure is not sensitive to the incident angle. Through optimised structure parameters, the filter permits waves propagating within a wide spatial-frequency bandwidth and with perfect transmittance. The spatial-frequency bandwidth is tunable by adjusting structure parameter and frequency.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J.W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1988), Chap. 8, pp. 217–290
S.P. Almeida, G. Indebetouw, Applications of Optical Fourier Transforms (Academic Press, San Diego, 1982), Chap. 2, pp. 41–87
Dettwiller, L., Chavel, P., J. Opt. Soc. Am. A 1, 18 (1984) CrossRef
Schurig, D., Smith, D.R., Appl. Phys. Lett. 82, 2215 (2003) CrossRef
Kato, J., Yamaguchi, I., Tanaka, H., Opt. Lett. 21, 767 (1996) CrossRef
Rabady, R., Avrutsky, I., Opt. Lett. 29, 605 (2004) CrossRef
Moreno, I., Araiza, J.J., Avendano-Alejo, M., Opt. Lett. 30, 914 (2005) CrossRef
Luo, Z., Tang, Z., Xiang, Y., Luo, H., Wen, S., Appl. Phys. B 94, 641 (2009) CrossRef
Papasimakis, N., Fu, Y.H., Fedotov, V.A., Prosvirnin, S.L., Tsai, D.P., Zheludev, N.I., Appl. Phys. Lett. 94, 211902 (2009) CrossRef
Chiam, S., Singh, R., Gu, J., Han, J., Zhang, W., Bettiol, A.A., Appl. Phys. Lett. 94, 064102 (2009) CrossRef
Singh, R., Rockstuhl, C., Menzel, C., Meyrath, T.P., He, M., Giessen, H., Lederer, F., Zhang, W., Opt. Express 17, 9971 (2009) CrossRef
Singh, R., Lu, X., Gu, J., Tian, Z., Zhang, W., J. Opt. 12, 015101 (2010) CrossRef
Yablonovitch, E., Phys. Rev. Lett. 58, 2059 (1987) CrossRef
John, S., Phys. Rev. Lett. 58, 2486 (1987) CrossRef
Feng, S., Elson, J.M., Overfelt, P.L., Opt. Express 13, 4113 (2005) CrossRef
Feng, S., Elson, J.M., Overfelt, P.L., Phys. Rev. B 72, 085117 (2005) CrossRef
Fang, Y.T., Zhou, J., Pun, E.Y.B., Appl. Phys. B 86, 587 (2007) CrossRef
Pendry, J.B., Martin-Moreno, L., Garcia-Vidal, F.J., Science 305, 847 (2004) CrossRef
Wang, L., Chen, H., Zhu, S., Phys. Rev. B 70, 245102 (2004) CrossRef
Lidorikis, E. et al., J. Appl. Phys. 101, 054304 (2007) CrossRef
Fang, Y., He, S., Phys. Rev. A 78, 023813 (2008) CrossRef
Mao, D., Ouyang, Z., Wang, J.C., Liu, C.P., Opt. Express 16, 628 (2008) CrossRef