Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-05T09:39:52.434Z Has data issue: false hasContentIssue false

Thermal conductivity of synthetic garnet laser crystals

Published online by Cambridge University Press:  13 June 2007

B. S. Wang
Affiliation:
Laboratory of Laser Technology and Application Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 1125, Hefei 230031, P.R. China
H. H. Jiang*
Affiliation:
Laboratory of Laser Technology and Application Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 1125, Hefei 230031, P.R. China
Q. L. Zhang
Affiliation:
Laboratory of Laser Technology and Application Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 1125, Hefei 230031, P.R. China
S. T. Yin
Affiliation:
Laboratory of Laser Technology and Application Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 1125, Hefei 230031, P.R. China
Get access

Abstract

The thermal conductivities of nine different synthetic garnet laser crystals at various temperatures, range from 273 to 393 K have been investigated by instantaneous measurement method. The results show that the thermal conductivity of each crystal decreases exponentially with the temperature increasing. It is notable that, different host crystals, such as YAG, GGG, and GSGG have different thermal conductivity, which is attributed to the crucial influence of crystal structure and composition on the absolute value of their thermal conductivity. Moreover, with respect to the same host crystals, the impurity scattering also results in the change of their thermal conductivities. This is because that a higher concentration of doped ions leads to a more phonon scattering modes, which results in a shorter mean free path of the phonons and a lower thermal conductivity. In addition, different host crystals have various dependences of thermal conductivity on dopant concentration. This works provides reliable and useful information for designing high power, high quality, and high stability laser devices.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Stokowski, S.E., Randles, M.H., Morris, R.C., IEEE J. Quantum Electron. 24, 934 (1998) CrossRef
Chen, Y.F., Huang, T.M., Kao, C.F., Wang, C.L., Wang, S.C., IEEE J. Quantum Electron. 8, 1424 (1997) CrossRef
Agnesi, A., Dell Acqua, S., Reali, G.C., Gobbi, P.G., Ragazzi, D., Appl. Optics 36, 597 (1997) CrossRef
Callaway, J., Phys. Rev. 113, 4 (1959) CrossRef
Slack, G.A., Oliver, D.W., Phys Rev. B 4, 592 (1971) CrossRef
Gaume, R., Viana, B., Ann. Chim. Sci. Mat. 28, 89 (2003) CrossRef
Gaume, R., Viana, B., Vivien, D., Roger, J.P., Fournier, D., Appl. Phys. Lett. 83, 1355 (2003) CrossRef
Slack, G.A., Phys Rev. 122, 1451 (1961) CrossRef
Xiaodong Xu, Zhiwei Zhao, Jun Xu et al., Solid State Commun. 130, 529 (2004)
Berman, R., Simon, F.E., Wilks, J., Nature 168, 277 (1951) CrossRef
Spencer, E.G., Denton, R.T., Bateman, T.B., Snow, W.B., Van Uitert, L.G., J. Appl. Phys. 34, 3059 (1963) CrossRef
Alton, W.J., Barlow, A.J., J. Appl. Phys. 38, 3023 (1967) CrossRef
Graham, L.J., Chang, R., J. Appl. Phys. 41, 2247 (1970) CrossRef
Menzer, G., Z. Kristallogr. 69, 300 (1928)
Oliver, D.W., Slack, G.A., J. Appl. Phys. 37, 1542 (1966) CrossRef
Eucken, A., Ann. Physik. 34, 185 (1911) CrossRef
A. Eucken, in Quanten-Theorie und Chemie, edited by H.F. alkenhagen (Hirzel, Leipzig, 1928), p. 112.
Eucken, E. Kuhn, Z. Physik Chem. (Frankfurt) 134, 193 (1928)
Blackman, , Philos. Mag. 19, 989 (1935) CrossRef
Wooster, A., Z. Krist. 95, 138 (1936)
Keyes, W., Phys. Rev. 115, 564 (1959) CrossRef
Slack, A., Phys. Rev. 139, A507 (1959) CrossRef
Missenard, Conductive Thermique des Solides, Liquides, Gaz et de Leurs Mélanges (Eyrolles, Paris, 1965), Chap. II
Spitzer, P., J. Phys. Chem. Solid. 31, 19 (1970) CrossRef