Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-19T03:20:45.279Z Has data issue: false hasContentIssue false

Study of trap levels in Alq3 layers by photodipolar absorption

Published online by Cambridge University Press:  26 October 2005

A. Moliton*
Affiliation:
UMOP, CNRS – FRE 2701, Faculté des Sciences et Techniques, 87060 Limoges Cedex, France
W. Rammal
Affiliation:
UMOP, CNRS – FRE 2701, Faculté des Sciences et Techniques, 87060 Limoges Cedex, France
B. Lucas
Affiliation:
UMOP, CNRS – FRE 2701, Faculté des Sciences et Techniques, 87060 Limoges Cedex, France
Get access

Abstract

In this paper we develop arguments about the part of traps involved in the electronic conductivity of the 8-tris-hydroxyquinoline aluminium (Alq3) studied in the conventional electronic structure ITO/Alq3/Al. After the presentation of general models and some topical discussions about the expression of the mobility in organic materials, we present results obtained by photodipolar absorption, which is a thermo-photo-dielectric effect, and by impedance spectroscopy measurements. This last method permits to define the equivalent circuit that can be designed as a single capacitor Cp and parallel resistor Rp network with a series resistance $R_{s} \approx $ 50 $\rm \Omega $ located on the anode side; the log – log plot Rp as a function of the dc bias voltage gives a linear law that can be seen in a first time as a consequence of a Trapped Charge Limited current (TCL); this TCL law could be improved with the introduction of a field dependent mobility. Indeed, the photodipolar absorption leads to more convincing arguments because this method acts as a probe to highlight the traps: in particular, we show that the optical pumping of electrons on trap levels gives a clear increase in the dielectric absorption generated by the reorientation of dipoles associated with trapped charges; the trap depth is located around Et = 0.19 eV, which is a value in good agreement with theoretical calculations or thermoluminescence measurements.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

E.W. Forsythe, D.C. Morton, C.W. Tang, Y. Gao, in Proceeding conf. SPIE, San Diego, Vol. 3476, 123 (1998)
S. Miyata, S. Nalwa, Organic electroluminescent materials and devices (Gordon and Breach Science Publishers, Amsterdam, 1997)
Ioannidis, A., Forsythe, E., Gao, Y., Wu, M.W., Conwell, E.M., Appl. Phys. Lett. 72, 3038 (1998) CrossRef
S.R. Forrest, P.E. Burrows, M.E. Thomson, in Organic electroluminescent materials and devices, edited by S. Miyata, H.S. Nalwa, (Gordon and Breach Science Publishers, Amesterdam, 1997), Chap. 13
Moliton, A., Lucas, B., Moreau, C., Friend, R.H., François, B., Philos. Mag. B 69, 1155 (1994) CrossRef
M. Pope, C.E. Swenberg, Electronic processes in organic crystals (Clarendon Press, Oxford, 1982)
Freeman, D.C., White, C.E., J. Am. Chem. Soc. 78, 2678 (1956) CrossRef
Schmidt, A., Anderson, M.L., Armstrong, N.R., J. Appl. Phys. 78, 5619 (1995) CrossRef
A. Moliton, Optolectronics of molecules and polymers (Springer, New York, 2005), or French edition Optoélectronique moléculaire et polymère : des concepts aux composants (Springer France, Paris, 2003)
Antony, R., Moliton, A., Ratier, B., Moussant, C., Eur. Phys. J. Appl. Phys. 4, 45 (1998) CrossRef
A.F. Ioffe, A.R. Regel, Progress in Semiconductors (Heywood and Co LTD, London, 1960), Vol. 4
Burrows, P.E., Shen, Z., Bulovic, V., McCarty, D.M., Forrest, S.R., Cronin, J.A., Thompson, M.E., J. Appl. Phys. 79, 7991 (1996) CrossRef
P. Pflüger, G. Weiser, Campbell, J. Scott, B. Street, in Handbook of conducting polymers, Vol. 2, edited by T.A. Skotheim (Dekker, New-York, 1986), Chap. 38
N.F. Mott, E.A. Davis, Electronic processes in non-crystalline materials (Clarendon Press, Oxford, 1979)
K.C. Kao, W. Hwang, Electrical transport in solids (Pergamon Press, Oxford, 1981)
Bässler, H., Phys. Stat. Sol. B 175, 15 (1993) CrossRef
Gill, W.D., J. Appl. Phys. 43, 5033 (1972) CrossRef
N.C. Greenham, R.H. Friend, in Semiconductor Device Physics of Conjugated Polymers, edited by H. Ehrenheich (Academic Press, 1995)
Meier, M., Karg, S., Zuleeg, K., Brütting, W., Schwoerer, M., J. Appl. Phys. 84, 87 (1998) CrossRef
T.P. Nguyen, P. Molinie, P. Destruel, in Handbook of Advanced Electronic and Photonic Materials and Devices, edited by H.S. Nalwa (Academic Press, 2001), Vol. 10, Chap. 1
A.K. Jonscher, Dielectric relaxation in solids (Chelsea Dielectric Press, London, 1983)
A. Moliton, Applications de l'électromagnétisme dans les milieux matériels (Hermès, 2004)
R. Freyman, M. Soutif, La spectroscopie Hertzienne (Dunod, Paris, 1960)
K. Morigaki, Physics of amorphous semiconductors, (World Scientific, Imperial College Press, London, 1999)
Kim, S.H., Choi, K.H., Lee, H.M., Hwang, D.H., Do, L.M., Chu, H.Y., Zyung, T., J. Appl. Phys. 87, 882 (2000) CrossRef
J. Shen, F. So, J. Yang, J.H. Xu, V.E. Choong, H.C. Lee, Proceeding conf. SPIE, San Diego, Vol. 3476, 196 (1998)
Natali, D., Sampietro, M., J. Appl. Phys. 92, 5310 (2002) CrossRef
Blom, P.W.M., de Jong, M.J., IEEE J. Quantum Elect. 4, 1077 (1998)