Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-25T12:39:56.022Z Has data issue: false hasContentIssue false

A study of the behavior of a d.c. pulsed low pressure point-to-plane discharge

Published online by Cambridge University Press:  14 May 2003

S. Potamianou
Affiliation:
Electrotechnic Materials Laboratory, University of Patras, 26500 Patras-Rio, Greece
N. Spyrou
Affiliation:
Electrotechnic Materials Laboratory, University of Patras, 26500 Patras-Rio, Greece
B. Held*
Affiliation:
Laboratoire d'Électronique des Gaz et des Plasmas, Université de Pau et des Pays de l'Adour, 64000 Pau, France
Get access

Abstract

A numerical study of a nitrogen cold plasma created by a pulsed discharge in a point-to-plane geometry at 4 torr is presented. The relative model is based on fluid description of the cold plasma, on Poisson's equation for the electric field and on balance equations for the excited population concerning only some vibrational band of molecular nitrogen (C3u, B3g and A$^3\sum_{\rm u}^+$). Secondary ionization phenomena and longitudinal diffusion effects are included in the model and their contribution to the glow-discharge establishment is studied. Results for space and time variations of the charged particles, electric field, potential and electronic current densities are reported. Particular attention was paid to the physical factors forming the cathodic layer and influencing its evolution. Results concerning the influence of the electronic current density on the creation of excited (radiative and metastables) particles are presented. According to these results, the plasma of the glow discharge occurs by means of three successive sequences with different characteristics. During the first sequence the gap is slowly filled of ions formed close to the anode, then in the second one an ionizing front formed close to the anode is propagating towards the cathode with an average velocity of 2 × 106 cm/s. It forms the cathodic layer zone and starts the participation of the secondary ionization effects leading to the third sequence which deals with the glow discharge establishment. The first significant production of excited states occurs within the ionizing front but the most important one is obtained when the glow discharge is established. It has been shown that at 4 torr and a gap of 1 cm, a mean electronic current density of 5 mA/cm2 is sufficient to create 109 cm−3 of (B3g, v = 0), 108 cm−3 of (C3u, v = 0) and 1011 cm−3 of (A$^3\sum_{\rm u}^+$, v = 0 ) excited particles.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A.E. Ercilbengoa, Étude expérimentale des régimes de décharge continue positive dans l'azote et l'air pour différentes pressions, Doctorate Thesis, Université de Pau et des Pays de l'Adour, France, 1999
F. Clément, Traitement de surface du polystyrène par un plasma impulsionnel dans l'azote, l'oxygène et l'argon, Doctorate Thesis, Université de Pau et des Pays de l'Adour, France, 2001
Clément, F., Held, B., Soulem, N., Spyrou, N., Eur. Phys. J. AP 13, 67 (2001) CrossRef
Clément, F., Held, B., Soulem, N., Eur. Phys. J. AP 17, 119 (2002) CrossRef
S.C. Brown, Basic Data of Plasma Physics (Cambridge, MA: MIT, 1966)
Y.P. Raizer, Gas discharge physics (Berlin: Springer-Verlag, 1991)
Dutton, J., J. Chem. Phys. Chem. Ref. Data 4, 577 (1975) CrossRef
Kast, S.J., Cason, C., J. Appl. Phys. 44, 1631 (1973) CrossRef
Felsenthal, P., Proud, J., Phys. Rev. 139, 1976 (1966)
Sato, N., J. Phys. D: Appl. Phys. 13, L3-6 (1980) CrossRef
Ercilbengoa, A.E., Loiseau, J.F., Spyrou, N., J. Phys. D: Appl. Phys. 33, 2425 (2000) CrossRef
Ercilbengoa, A.E., Spyrou, N., Loiseau, J.F., J. Phys. D: Appl. Phys. 34, 584 (2001) CrossRef
Ch. Manassis, N. Spyrou, Proc. 12th Int. Conf. Gas Discharge and their Applications (Swansea), 1992, Vol. 2, pp. 882-886
Grangé, F., Soulem, N., Loiseau, J.F., Spyrou, N., J. Phys. D: Appl. Phys. 28, 1619 (1995) CrossRef
S. Potamianou, J.F. Loiseau, N. Spyrou, Proc. 13th Int. Conf. on Gas Discharges and Their Applications: GD 2000 (Glasgow, UK), 2000, Vol. 1, pp. 352-355
Potamianou, S., Loiseau, J.F., Spyrou, N., J. Phys. D: Appl. Phys. 35, 1373 (2002) CrossRef
Ricard, A., J. Phys. D: Appl. Phys. 30, 2261 (1997) CrossRef
J.L. Delcroix, C. Matos-Ferreira, A. Ricard, Atomes et molécules métastables dans les gaz ionisés (Editions du Centre National de la Recherche Scientifique, 1975), p. 186
A. Ricard, Plasmas réactifs (Société Française du Vide, 1995), p. 156
Brühl, S.P., Russell, M.W., Gomez, B.J., Grigióni, G.M., Feugeas, J.N., Ricard, A., J. Phys. D: Appl. Phys. 30, 2917 (1997) CrossRef
Lofthus, A., Krupenie, P.H., J. Chem. Phys. Ref. Data 6, 113 (1977) CrossRef
Mitchel, K.B., J. Chem. Phys. 53, 1775 (1970) CrossRef
Calo, J.M., Axtman, R.C., J. Chem. Phys. 54, 1332 (1971) CrossRef
Spyrou, N., Manassis, Ch., J. Phys. D: Appl. Phys. 22, 120 (1989) CrossRef
B. Held, Physique de Plasmas Froids (Paris: Masson, 1994)
H.W. Drawin, Reaction under Plasma Conditions, edited by M. Venugopalan (New York: Wiley-Interscience, 1971), Vol. 1
Burns, D.J., Simpson, F.R., Mc Cokney, J.W., J. Phys. B: At. Mol. Phys. 2, 52 (1969) CrossRef
Jobe, J.D., Sharton, F.A., St John, R.M., J. Opt. Soc. Am. 57, 106 (1967) CrossRef
Shemansky, D.E., Broadfoot, A.L., J. Quantum Spectr. Radiat. Transf. 11, 1401 (1971) CrossRef
V.V. Skubenich, I.P. Zapesochny, Proc. 54th Int. Conf. On Atomic Collisions, Leningrad, 1976, pp. 570-571
Mc Cokney, J.W., Simpson, F.R., J. Phys. B: At. Mol. Phys. 2, 923 (1969)
Green, A.E.S., Barth, C.A., J. Geophys. Res. 70, 1083 (1965) CrossRef
Morrow, R., J. Comput. Phys. 43, 1 (1981) CrossRef
J.P. Boris, D.L. Book, Solution of continuity equations by the method of flux corrected transport, in Methods in Computational Physics (New-York: Academic Press, J. Killeen ed.), Vol. 16, pp. 85-129
Boris, J.P., Book, D.L., J. Comput. Phys. 11, 39 (1973) CrossRef
Kunhardt, E.E., Tzeng, Y., Phys. Rev. 38, 1410 (1988) CrossRef
Wang, M.C., Kunhardt, E.E., Phys. Rev. 42, 2366 (1990) CrossRef
Morrow, R., Cram, L.E., J. Comput. Phys. 57, 129 (1985) CrossRef
Zalesak, S.T., J. Comput. Phys. 31, 335 (1979) CrossRef
Davies, A.J., Davies, C.S., Evans, C.J., Proc. IEE 118, 816 (1972)
P.A. Vitello, B.M. Penetrante, J.N. Bardsley, Multi dimensional modeling of the dynamic morphology of streamer coronas in Non thermal Plasmas Technics for Pollution Control, NATO ASI Ser. [New York: Academic Press] g34 Part. A 249-271, 1973
Spyrou, N., Manassis, Ch., J. Phys. II France 1, 1021 (1991) CrossRef
Wagner, K.H., Z. Naturforch. 19a, 716 (1964)
M. Touseau, Excitation de l'azote par les atomes métastables d'argon, Doctorate Thesis, Université de Paris-Sud Centre d'Orsay, France, 1978
Spyrou, N., Ercilbengoa, A.E., Loiseau, J.F., J. Phys. D: Appl. Phys. 35, 1 (2002)