Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-01T15:31:16.774Z Has data issue: false hasContentIssue false

Structural, electrical and magnetic properties of evaporated permalloy thin films: effect of substrate and thickness

Published online by Cambridge University Press:  25 May 2012

A. Guittoum*
Affiliation:
Centre de Recherche Nucléaire d’Alger, 2 Bd Frantz Fanon, BP 399, Alger-Gare, Alger 16000, Algeria
A. Bourzami
Affiliation:
LESIMS, Département de Physique, Faculté des Sciences, Université Ferhat Abbas, Sétif 19000, Algeria
A. Layadi
Affiliation:
LESIMS, Département de Physique, Faculté des Sciences, Université Ferhat Abbas, Sétif 19000, Algeria
G. Schmerber
Affiliation:
IPCMS-GEMME, UMR-CNRS, Université Louis Pasteur, 23 rue du Loess, B.P. 43, 67043 Strasbourg Cedex 2, France
*
Get access

Abstract

We have studied the effects of the substrate and the thickness on the structural, electrical and magnetic properties of permalloy thin films Ni81Fe19 (Py). Series of Py thin films were evaporated on four various substrates: glass, kapton, Si(1 0 0) and Si(1 1 1). The thickness ranges from 13 nm to 190 nm. We show that evaporated permalloy on kapton and Si(1 1 1) present a strong ⟨1 1 1⟩ preferred orientation for samples thicker than 85 nm; however, the films grown on glass and Si(1 0 0) present a weak (1 1 1) texture for most of these samples. Generally, the lattice constant for Py/glass, Py/Si(1 0 0) and Py/Si(1 1 1) samples is found to be smaller than the bulk value (abulk), while for the Py/kapton, it is larger than abulk. There is an overall increase of the grain sizes (100 Å–480 Å) with thickness for Py/Si(1 1 1), Py/Si(1 0 0) and Py/glass. For the Py/kapton samples, the grain sizes (about 130 Å) seem to be independent of the thickness. The resistivity, ρ, decreases with increasing thickness for all samples. The highest values of ρ were observed in the Py/kapton thin films, diffusion at the grain boundaries might be in part responsible for these high values. The magnetization easy axis is found to be in the film plane for all samples. For all series, the two thinner films seem to exhibit a perpendicular magnetocrystalline anisotropy. The coercive field, HC//, values range from 1 Oe to 67 Oe. A peak in the HC// vs. t curve is observed for Py/Si while for Py on glass and Py/kapton, HC// seems to be constant. We also observed that for the thicker Py/Si(1 1 1) samples, the coercivity decreases as the grain sizes increase.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Min, S., Bain, J.A., Greve, D.W., J. Appl. Phys. 91, 6824 (2002)CrossRef
Zhang, G., Carley, L.R., IEEE Trans. Magn. IV, 469 (2004)
Yeh, T., Witcraft, W.F., IEEE Trans. Magn. 31, 3131 (1995)
Robertson, N., Hu, H.L., Tsang, C., IEEE Trans. Magn. 33, 2818 (1997)CrossRef
Schneider, M., Liszkowski, J., Rahm, M., Wegscheider, W., Weiss, D., Hoffmann, H., Zweck, J., J. Zweck, J. Phys. D: Appl. Phys. 36, 2239 (2003)CrossRef
Schneider, M.L., Kos, A.B., Silva, T.J., Appl. Phys. Lett. 86, 202503 (2005)CrossRef
Yu, G.H., Li, M.H., Teng, J., Zhu, F.W., Lai, W.Y., Thin Solid Films 484, 208 (2005)CrossRef
Shen, J., Gai, Z., Kirschner, J., Surf. Sci. Rep. 52, 163 (2004)CrossRef
Kockar, H., Alper, M., Kuru, H., Meydan, T., J.Magn. Magn. Mater. 304, 736 (2006)CrossRef
Doolittle, L.R., Nucl. Instr. Methods B 9, 344 (1985)CrossRef
Hollingworth, M.P., Gibbs, M.R.J., Hill, E.W., J. Appl. Phys. 93, 8737 (2003)CrossRef
Cheng, S.F., Lubitz, P., Zheng, Y., Edelstein, A.S., J. Magn. Magn. Mater. 282, 109 (2004)CrossRef
Rijks, Th.G.S.M., Lenczowski, S.K.J., Phys. Rev. B 56, 362 (1997)CrossRef
Queste, S., Damiani, D., Guillet, F., Ache, O., Soret, J.C., Université François-Rabelais, 1 (2003)
Luby, S., Majkova, E., Caricato, A.P., Fernandez, M., Luches, A., Frait, Z., Fraitova, D., Malych, R., J. Magn. Magn. Mater. 272, 1408 (2004)CrossRef
Yeh, T., Sivertsen, J.M., Judy, J.H., IEEE. Trans. Magn. 23, 2215 (1987)CrossRef
Lo, J., Hwang, C., Huang, T.C., Campbell, R., J. Appl. Phys. 61, 3520 (1987)CrossRef
Eberhart, J.P., Analyse Structurale et Chimique des Matéeriaux (Bordas, Paris, 1989)Google Scholar
Chapman, V.B., Collins, A.J., Thin Solid Films 89, 243 (1982)CrossRef
Vapaille, A., Castagné, R., Dispositifs et Circuits Intéegrées Semiconducteurs (Bordas, Paris, 1990)Google Scholar
Ghebouli, B., Layadi, A., Kerkache, L., Eur. Phys. J. Appl. Phys. 3, 35 (1998)CrossRef
Chopra, K.L., Thin Film Phenomena (McGraw Hill Company, New York, 1970)Google Scholar
Solt, K., Thin Solid Films 125, 251 (1985)CrossRef
Rook, K., Zeltser, A.M., Artman, J.O., Laughlin, D.E., Kryder, M.H., Chrenko, R.M., J. Appl. Phys. 69, 5670 (1991)CrossRef
Talmadge, J.M., Gao, J., Riley, M.P., Roth, R.J., Kim, S.O., Eden, J.G., Pudonin, F.A., Melnikov, I.V., Appl. Phys. Lett. 84, 4197 (2004)CrossRef
Trunk, T., Redjdal, M., Kákay, A., Ruane, M.F., Humphrey, F.B., J. Appl. Phys. 89, 7606 (2001)CrossRef
Chen, J.S., Lau, S.P., Zhang, Y.B., Sun, Z., Tay, B.K., Sun, C.Q., Thin Solid Films 443, 115 (2003)CrossRef
Encinas-Oropesa, A., Nguyen Van Dau, F., J. Magn. Magn. Mater. 256, 301 (2003)CrossRef
Akhter, M.A., Mapps, D.J., Ma Tan, Y.Q., Petford-Long, A., Doole, R., J. Appl. Phys. 81, 4122 (1997)CrossRef
Bi, X., Gan, L., Ma, X., Gong, S., Xu, H., J. Magn. Magn. Mater. 268, 321 (2004)CrossRef
Guanghua, Y., Hongchen, Z., Fengwu, Z., Chin. Sci. Bull. 46, 1681 (2001)CrossRef
Stangl, C., Aigner, P., Hauser, H., Hochreiter, J., Riedling, K., in Third Int. Euro Conf. on Advanced Semiconductor Devices and Microsystems ASDAM 2000, Slovakia, October 16–18, 2000, p. 57