Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-12T00:21:34.954Z Has data issue: false hasContentIssue false

Spectroscopic investigation of liquid helium excited by a corona discharge: evidence for bubbles and “red satellites”

Published online by Cambridge University Press:  07 May 2009

Z.-L. Li
Affiliation:
G2E.lab, CNRS and Joseph Fourier University, 25 rue des Martyrs, 38042 Grenoble, France
N. Bonifaci*
Affiliation:
G2E.lab, CNRS and Joseph Fourier University, 25 rue des Martyrs, 38042 Grenoble, France
F. Aitken
Affiliation:
G2E.lab, CNRS and Joseph Fourier University, 25 rue des Martyrs, 38042 Grenoble, France
A. Denat
Affiliation:
G2E.lab, CNRS and Joseph Fourier University, 25 rue des Martyrs, 38042 Grenoble, France
K. von Haeften
Affiliation:
University of Leicester, Department of Physics and Astronomy, University Road, Leicester, UK
V. M. Atrazhev
Affiliation:
Joint Institute for High Temperatures (JIHT) and Russian Academy of Sciences, Izhorskaya St. 13, 125412, Moscow, Russia
V. A. Shakhatov
Affiliation:
Topchiev Institute of Petrochemical Synthesis and Russian Academy of Sciences, Leninskii Prospect 29, 119991 Moscow, Russia
Get access

Abstract

The establishment of corona discharges close to a point electrode under both negative and positive high voltage in normal liquid helium (LHe) at 4.2 K is reported. The experiments were carried out at constant temperature and pressures ranging from 0.1–10 MPa. Visible luminescence emitted from the zone close to the tip revealed lines due to excited He atoms and molecules. The molecular luminescence showed hot band emissions with vibrational levels populated up to v=2. Rotational temperatures of 800 K were estimated showing that the excitations do not thermalise. With increasing pressure the lines shifted to shorter wavelengths and became broader. The magnitude of the increase in width deviated from what is expected from the gas phase and from classical line broadening theory and rather showed similarities to the behavior of bubbles in LHe. The detailed analysis of the rotational line intensity distribution revealed the presence of an additional radiator at the long wavelength side of molecular bands that we tentatively assign to “red satellite” emission. For corona discharges with positive tip polarities both atomic and molecular lines showed “red satellite" bands with much larger intensity than for negative polarity. The origin of the red satellite and the polarity dependence is unclear yet.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sigmond, R.S., J. Appl. Phys. 53, 892 (1982) CrossRef
Janke, J.A., Meyer, L., Rice, S.A., Phys. Rev. A 3, 734 (1971) CrossRef
N. Bonifaci, A. Denat, in Proc. 12 th Int. Conf. on Conduction and Breakdown in Dielectric Liquids, Roma, 1996, edited by C. Mazzetti, IEEE Catalog Number 96CH35981, p. 37
N. Bonifaci, M. Nur, A. Denat, V. Atrazhev, C. Trassy, in Proc. 1999 IEEE 13 th Int. Conf. on Dielectric Liquids, Nara, Japan, 1999, edited by K. Yoshino, IEEE Catalog Number 99CH36213, p. 441
Meyer, L., Davis, H.T., Phys. Rev. 126, 1927 (1962) CrossRef
Li, Z., Bonifaci, N., Denat, A., Atrazhev, V., IEEE Trans. Dielectr. Electr. Insul. 13, 624 (2006) CrossRef
Dennis, W.S., Durbin Jr, E.., W.A. Fitzsimmons, O. Heybey, G.K. Walters, Phys. Rev. Lett. 23, 1083 (1969) CrossRef
Soley, F.J., Fitzsimmons, W.A., Phys. Rev. Lett. 32, 988 (1974) CrossRef
Keto, J.W., Soley, F.J., Stockton, M., Fitzsimmons, W.A., Phys. Rev. A 10, 872 (1974) CrossRef
Zimmermann, P.H., Reichert, J.F., Phys. Rev. B 15, 2630 (1977) CrossRef
Goncharov, V.A., Levitov, V.I., Izvestiya Academii Nauk, Energetika i Transport (in Russian) 12, 134 (1975)
Kafanov, S.G., Parshin, A.Ya., Todoshenko, I.A., JETP 91, 991 (2000) CrossRef
Parshin, A.Ya., Todoshenko, I.A., Kafanov, S.G., Physica B 91, 284 (2000)
von Haeften, K., de Castro, A.R.B., Joppien, M., Moussavizdeh, L., von Pietrowski, R., Moller, T., Phys. Rev. Lett. 78, 4371 (1997) CrossRef
von Haeften, K., Laarmann, T., Wabnitz, H., Moller, T., Phys. Rev. Lett. 88, 233401 (2002) CrossRef
von Haeften, K., Laarmann, T., Wabnitz, H., Moller, T., J. Phys. B: At. Mol. Opt. Phys. 38, S373 (2005) CrossRef
Benderskii, A.V., Zadoyan, R., Schwentner, N., Apkarian, V.A., J. Chem. Phys. 110, 1542 (1999) CrossRef
Benderskii, A.V., Eloranta, J., Zadoyan, R., Apkarian, V.A., J. Chem. Phys. 117, 1201 (2002) CrossRef
Rellergert, W.G., Cahn, S.B., Garvan, A., Hanson, J.C., Lippincott, W.H., Nikkel, J.A., McKinsey, D.N., Phys. Rev. Lett. 100, 025301-1 (2008) CrossRef
Surko, C.M., Reif, F., Phys. Rev. 175, 229 (1968) CrossRef
Eloranta, J., Apkarian, V., J. Chem. Phys. 117, 10139 (2002) CrossRef
Rosenblit, M., Jortner, J., Phys. Rev. Lett. 75, 4079 (1995) CrossRef
Hickman, A.P., Steets, W., Lane, N.F., Phys. Rev. B 12, 3705 (1975) CrossRef
G. Herzberg, Molecular Spectra and Molecular Structure: I. Spectra of Diatomic Molecules, 2nd edn. (Van Nostrand, Princeton, NJ, 1950)
Ginter, M.L., J. Mol. Spectrosc. 18, 321 (1965) CrossRef
Pfaff, J., Begemann, M.H., Saykally, R.J., Mol. Phys. 52, 541 (1984) CrossRef
A. Corney, Atomic and Laser Spectroscopy (Oxford, 1977)
Z. LI, Ph.D. thesis, University of J. Fourier, Grenoble, 2008
Hindmarsh, W.R., Petford, A.D., Smith, G., Proc. R. Soc. A 297, 296 (1967) CrossRef
L.D. Landau, E.M. Lifshits, Quantum mechanics, 2nd edn. (Pergamon, Oxford, 1987)
Kramers, G., Z. Phys. 53, 422 (1929) CrossRef
Focsa, C., Bernath, P.F., Colin, R., J. Mol. Spectrosc. 191, 209 (1998) CrossRef
Mulliken, R.S. et al., Phys. Rev. 34, 1530 (1929) CrossRef
I. Kovacs, Rotational structure in the spectra of diatomic molecules (Adam Higer Ltd., London, 1969)
Budo, A., Z. Phys. 105, 579 (1937) CrossRef
Schadee, A., Bull. Astron. Inst. Neth. 17, 311 (1964)