Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-01T18:33:00.861Z Has data issue: false hasContentIssue false

A simple integral formulation for the modeling of thin conductive shells*

Published online by Cambridge University Press:  06 November 2013

Tung Le-Duc*
Affiliation:
Department of Electric Power Systems, School of Electrical Engineering, Hanoi University of Science and Technology, Dai Co Viet Road, 1000 Hanoi, Vietnam
Gérard Meunier
Affiliation:
Grenoble Electrical Engineering Laboratory, University of Grenoble Grenoble-INP/Université Joseph Fourier/CNRS UMR 5269, 11 rue des Mathématiques, BP 46, 38402 Saint-Martin-d’Héres Cedex, France
Olivier Chadebec
Affiliation:
Grenoble Electrical Engineering Laboratory, University of Grenoble Grenoble-INP/Université Joseph Fourier/CNRS UMR 5269, 11 rue des Mathématiques, BP 46, 38402 Saint-Martin-d’Héres Cedex, France
Jean-Michel Guichon
Affiliation:
Grenoble Electrical Engineering Laboratory, University of Grenoble Grenoble-INP/Université Joseph Fourier/CNRS UMR 5269, 11 rue des Mathématiques, BP 46, 38402 Saint-Martin-d’Héres Cedex, France
Laurent Krähenbühl
Affiliation:
Université de Lyon, AMPERE, CNRS UMR 5005, École Centrale de Lyon, 38 av. Guy de Collongue, 69134 Ecully Cedex, France
Get access

Abstract

In order to model thin conductive non-magnetic shells, an original surface integral formulation is proposed. The method is based on a surface impedance condition which takes into account the field variation through depth due to skin effect. It is general and enables the modeling of various problems whatever their skin depth and avoiding the meshing of the air region. The formulation is compared with another integral formulation recently proposed by authors and is validated thanks to an axisymmetric finite-element method (FEM). Advantages and drawbacks of this new formulation are discussed.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Contribution to the Topical Issue “Numelec 2012”, Edited by Adel Razek.

References

Krähenbühl, L., Muller, D., IEEE Trans. Magn. 29, 1450 (1993)CrossRef
Ospina, A., Santandrea, L., Le Bihan, Y., Marchand, C., J. Appl. Phys. 52, 23303 (2010)
Guérin, C., Tanneau, G., Meunier, G., Labie, P., Ngnegueu, T., Sacotte, M., IEEE Trans. Magn. 31, 1360 (1995)CrossRef
Krähenbühl, L., Dular, P., Zeidan, T., Buretand, F., IEEE Trans. Magn. 40, 912 (2004)CrossRef
Bíró, O., Bárdi, A., Preis, K., Renhart, W., Richter, K-R., IEEE Trans. Magn. 33, 1173 (1997)
Guérin, C., Meunier, G., IEEE Trans. Magn. 48, 323 (2012)CrossRef
Thomas, P., Le Menach, Y., IEEE Trans. Magn. 48, 823 (2012)CrossRef
Dang, V.Q., Dular, P., Sabariego, R.V., Krähenbühl, L., Geuzaine, C., IEEE Trans. Magn. 48, 407 (2012)CrossRef
Le-Duc, T., Meunier, G., Chadebec, O., Guichon, J-M., IEEE Trans. Magn. 48, 427 (2012)CrossRef
Buchau, A., Tsafak, S., Hafla, W., Rucker, W., IEEE Trans. Magn. 44, 1338 (2008)CrossRef
Banucu, R., Albert, J., Scheiblich, C., Reinauer, V., Rucker, W., Hafla, A., Huf, A., IEEE Trans. Magn. 47, 1050 (2011)CrossRef
Nguyen, T-T., Le-Duc, T., Chadebec, O., Meunier, G., Guichon, J-M., “Compression matricielle d’une formulation intégrale par la méthode multipôlaire rapide pour le calcul de courants de Foucault dans une ráégion mince conductrice,” in NUMELEC 2012, Marseille, France Google Scholar
Flux Cedrat. Meylan, France, www.cedrat.com