Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-17T15:02:51.832Z Has data issue: false hasContentIssue false

The role of domain wall forces on thermal-magnetically formed marks in heat-assisted magnetic probe recording

Published online by Cambridge University Press:  11 October 2006

Li Zhang*
Affiliation:
Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
Xiao-Tao Zu
Affiliation:
Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China
Get access

Abstract

We characterize a method of heat-assisted magnetic recording (HAMR), which may be applied for high-density probe storage system. The magnetic recording medium is a CoNi/Pt multilayered film, suitable for perpendicular recording. The heating source is the field emission current from a scanning tunneling microscopy (STM) tip, with pulse voltages added between the tip and the film. Writing shows a threshold voltage of 4 V. Marks with an average size of 165 nm were achieved for pulses above 4 V. A model of dynamic domain formation is applied to simulate the process of the formation of marks. The effect of domain wall forces is discussed. Simulation results agree with experiments well, without the need of taking domain wall forces into account.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lu, P.L., Charap, S.H., IEEE T. Magn. 31, 2767 (1995)
Ruigrok, J.J.M., Coehoorn, R., Cumpson, S.R., Kesteren, H.W., J. Appl. Phys. 87, 5398 (2000) CrossRef
Katayama, H., Hamamoto, M., Sato, J., Murakami, Y., Kojima, K., IEEE T. Magn. 36, 195 (2000) CrossRef
Mochida, M., Birukawa, M., Suzuki, T., IEEE T. Magn. 37, 1396 (2001) CrossRef
McDaniel, T.W., J. Phys.-Cond. 17, R315 (2005)
Binnig, G., Rohrer, H., Gerber, Ch., Weibel, W., Phys. Rev. Lett. 49, 57 (1982) CrossRef
Binnig, G., Rohrer, H., Gerber, Ch., Weibel, W., Appl. Phys. Lett. 40, 178 (1982) CrossRef
Binnig, G., Rohrer, H., Gerber, Ch., Weibel, W., Phys. Rev. Lett. 50, 120 (1983) CrossRef
Zhang, L., Bain, J.A., Zhu, J.-G., Abelmann, L., Onoue, T., IEEE T. Magn. 40, 2549 (2004) CrossRef
L. Zhang, J.A. Bain, J.-G. Zhu, L. Abelmann, T. Onoue, J. Magn. Magn. Mater. (2006) in press
Porthun, S., Abelmann, L., Lodder, C., J. Magn. Magn. Mater. 182, 238 (1998) CrossRef
Thiele, A.A., Bobeck, A.H., Torre, E.D., Gianola, U.F., Bell Syst. Tech. J. 50, 711 (1971) CrossRef
Thiele, A.A., Bell Syst. Tech. J. 50, 725 (1971) CrossRef
Mansuripur, M., Connell, G.A.N., J. Appl. Phys. 55, 3049 (1984) CrossRef
Shieh, H.D., Kryder, M.H., J. Appl. Phys. 61, 1108 (1987) CrossRef
Fowler, R.H., Nordheim, L.W., Proc. R. Soc. London A 119, 173 (1928) CrossRef
Spindt, C.A., Brodie, I., Humphrey, L, Westerberg, E.R., J. Appl. Phys. 47, 5248 (1976) CrossRef
Zuber, J.D., Jensen, K.L., Sullivan, T.E., J. Appl. Phys. 91, 9379 (2002) CrossRef
Wong, P.Y., Hess, C.K., Miaoulis, I.N., Int. J. Heat Mass Tran. 35, 3313 (1992) CrossRef
Carley, L.R., Bain, J.A., Fetter, G.K., Greve, D.W., Guillou, D.F., Lu, M.S.L., Mukherjee, T., Santhanam, S., Abelmann, L., Min, S., J. Appl. Phys. 87, 6680 (2000) CrossRef