Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-04-30T18:40:27.829Z Has data issue: false hasContentIssue false

Random pseudo promptings applied to the thermal characterization of a wet porous material

Published online by Cambridge University Press:  15 April 1999

E. Delacre
Affiliation:
Laboratoire d'Artois de Mécanique et Habitat, Équipe thermique instrumentation, Université d'Artois Faculté des Sciences Appliquées, 62400 Béthune, France
D. Defer
Affiliation:
Laboratoire d'Artois de Mécanique et Habitat, Équipe thermique instrumentation, Université d'Artois Faculté des Sciences Appliquées, 62400 Béthune, France
E. Antczak
Affiliation:
Laboratoire d'Artois de Mécanique et Habitat, Équipe thermique instrumentation, Université d'Artois Faculté des Sciences Appliquées, 62400 Béthune, France
B. Duthoit
Affiliation:
Laboratoire d'Artois de Mécanique et Habitat, Équipe thermique instrumentation, Université d'Artois Faculté des Sciences Appliquées, 62400 Béthune, France
Get access

Abstract

The generalized impedances allow to characterize a one-way thermal system whose two faces are accessible. From experimental measurements of the flux densities and variations in temperature in the access faces of a homogeneous material, the two generalized impedances of storage and transfer are calculated in the frequential field. The theory of the thermal quadripole enables to determine a theoretical expression of these impedances. After a sensitivity study which underlines the accessible parameters and the optimal frequency band, an optimization procedure of the setting of the ideal model of one of the two impedances on the corresponding experimental curve allows to identify the effusivity and the thermal diffusivity of material. The method is applied to the study of a sand with three water contents.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Somerton, W.H., Mossahebi, M., Rev. Sci. Instr. 38, 10 (1967). CrossRef
Defer, D., Antczak, E., Duthoit, B., Meas. Sci. Technol 9, 496 (1998). CrossRef
M. Matsumoto, S. Hokoi, M. Yamamoto, Thermophys. Prop., 25 (1984).
Herin, P., Thery, P., Meas. Sci. Technol. 3, 158 (1993).
Degiovanni, A., Heat Mass Trans. 31, 553 (1988). CrossRef
Defer, D., Duthoit, B., Rev. Gen. Therm. 395, 633 (1994).
A.V. Oppenheim, C.T. Mullis, Signals and systems (Prentice-Hall, 1983).
Duthoit, B., Leclercq, D., Thry, P., J. Appl. Phys. 52, 2 (1983).
Azizi, S., Batsale, J.C., Moyne, C., Degiovanni, A., Temp. High. Press. 21, 383 (1989).
J.P. Bardon, in Proceedings of the Colloque inter-universitaire Franco-Quebécois, Toulouse, France, 1993, pp. 15-32.
J.S. Bendat, A.G.J. Piersol, Measurements and Analysis of random Data (Wiley, 1966).
J. Hladik, Métrologie des propriétés thermophysiques des matériaux (Masson, 1990).
J. Max, Méthodes et techniques de traitement du signal et applications aux mesures physiques (Masson, 1985), Vol. 2.
W. Press, B. Flannery, S. Teukolsky, W. Vetterling, Numerical Recipes (Cambridge University Press, 1986).
E. Antczak, Ph.D. thesis, Université d'Artois, 1996.