Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-16T09:26:05.452Z Has data issue: false hasContentIssue false

Pulsed eddy current non-destructive evaluation based on coupled electromagnetic quantities method

Published online by Cambridge University Press:  28 November 2011

A. Bouzidi*
Affiliation:
Laboratoire de Génie Électrique (LGE), Université A. Mira, route de Mezaia-Targa-Ouzamour, 6000 Bejaϊa, Algeria
B. Maouche
Affiliation:
Laboratoire de Génie Électrique (LGE), Université A. Mira, route de Mezaia-Targa-Ouzamour, 6000 Bejaϊa, Algeria
M. Feliachi
Affiliation:
IREENA-IUT, CRTT, University Boulevard, BP 406, 44602 Saint-Nazaire Cedex, France
G. Berthiau
Affiliation:
IREENA-IUT, CRTT, University Boulevard, BP 406, 44602 Saint-Nazaire Cedex, France
Get access

Abstract

This paper proposes a semi-analytical model for Pulsed Eddy Current Non-Destructive Evaluation (PEC-NDE) based on the Coupled Electromagnetic Quantities Method (CEQM). The proposed formulation is developed from coupled electric circuit’s approach in which the Crank Nicholson formula is used to derive the transient behavior. The computational model makes use of current excitation allowing the determination of the sensor voltage in the case of an axisymmetric device. The feature of the variation of voltage provides information on the electromagnetic and geometrical properties of the device. So, the second peak of voltage variation (SPVV) and second ratio between the minimum and maximum (RMM2) are used to determine these properties. The proposed model is validated by comparison with Fourier reconstitution obtained from measurements on one hand and with finite element calculations on the other hand. The developed model, associated to an inversion technique, is applied to evaluate the lift-off and the work piece thickness.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Win, W., Dickinson, S.J., Peyton, A., J. Meas. Sci. Technol. 17, 393 (2006)
Maouche, B. et al., NDT&E Int. 42, 573 (2009)CrossRef
Romero Ramırez, A., Mason, J.S.D., Pearson, N., NDT&E Int. 42, 16 (2009)CrossRef
Chen, T., Tian, G.Y., Sophian, A., Que, P.W., NDT&E Int. 41, 467 (2008)CrossRef
He, Y., Luo, F., Pan, M., Weng, F., Hu, X., Gao, J., Liu, B., NDT&E Int. 43, 409 (2010)CrossRef
He, Y. et al., NDT&E Int. 43, 2 (2010)
Ida, N., NDT&E Int. 28, 4 (1995)
Dadić, M., Vasić, D., Bilas, V., NDT&E Int. 38, 107 (2005)CrossRef
Grimberg, R., Udpa, L., Savin, A., NDT&E Int. 39, 264 (2006)CrossRef
Tsuboi, H. et al., IEEE Trans. Magn. 40, 1330 (2004)CrossRef
Di Rienzo, L., Ida, N., Yuferev, S., IEEE Trans. Magn. 39, 1626 (2003)CrossRef
Li, Y., Tian, G.Y., Simm, A., NDT&E Int. 41, 477 (2008)CrossRef
Lefebvre, J.H.V., Mandache, C., NDT&E Int. 39, 57 (2006)
Vasic, D., Bilas, V., Snajder, B., NDT&E Int. 40, 103 (2007)CrossRef
Durand, E., Magnétostatique (Masson, Paris, 1968)Google Scholar
Maouche, B., Feliachi, M., Khenfer, N., Eur. Phys. J. Appl. Phys. 33, 59 (2006)CrossRef
Mugnier, D., Dauphine, F., Lafoucrière, J., Chery, R., Rev. Phys. Appl. 4, 485 (1969)CrossRef
Anli, F., Gungor, S., Appl. Math. Model. 31, 727 (2007)CrossRef
Schanze, T., Comput. Phys. Commun. 165, 15 (2005)CrossRef
Abu-Saman, A.M., Assaf, A.M., Adv. Appl. Math. Anal. 2, 117 (2007)
Segerlind, L.J., Applied finite element analysis, 2nd edn. (J. Wiley & Sons, New York, 1984)Google Scholar
Ludwig, R., Dai, X.-W., IEEE Trans. Magn. 26, 299 (1990)CrossRef