Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-24T08:06:27.185Z Has data issue: false hasContentIssue false

Principles and applications of a controllable electromagnetic band gap material to a conformable spherical radome

Published online by Cambridge University Press:  03 April 2009

S. Haché
Affiliation:
IEF, Université Paris-Sud, 91405 Orsay, France
S. N. Burokur
Affiliation:
IEF, Université Paris-Sud, 91405 Orsay, France
A. de Lustrac*
Affiliation:
IEF, Université Paris-Sud, 91405 Orsay, France
F. Gadot
Affiliation:
IEF, Université Paris-Sud, 91405 Orsay, France
P. Cailleu
Affiliation:
EADS Research Center, 92000 Suresnes, France
G.-P. Piau
Affiliation:
EADS Research Center, 92000 Suresnes, France
Get access

Abstract

This paper presents the principle of two types of conformable and controllable spherical radome based on Electromagnetic Band Gap (EBG) materials operating at around 10 GHz. The EBG structure is composed of a grid of metallic wires conformed on a hollow spherical object. Two switching control configurations are considered: (1) between an EBG structure made of electrically continuous wires and another one made of discontinuous wires, and (2) between two EBG structures made of discontinuous wires where each has a different period of discontinuities. Both switching configurations are simulated and experimentally characterized on passive prototypes. An excellent agreement is observed between simulations and measurements. The radiation patterns of two types of antennas, a horn antenna and a meteorological antenna, are also measured in the presence of the radome.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M. Hook, J. Vardaxoglou, K. Ward, Proc. 27th ESA Antenna Technology Workshop Innovative Periodic Antennas, Santiago de Compostela, Spain, 2004, pp. 273–283
Maci, S., Caiazzo, M., Cucini, A., Casaletti, M., IEEE Trans. Antennas Propag. 53, 70 (2005) CrossRef
de Lustrac, A., Gadot, F., Cabaret, S., Lourtioz, J.-M., Brillat, T., Priou, A., Akmansoy, E., Appl. Phys. Lett. 75, 1625 (1999) CrossRef
de Lustrac, A., Gadot, F., Akmansoy, E., Brillat, T., Appl. Phys. Lett. 78, 4196 (2001) CrossRef
B.A. Munk, Frequency selective surfaces, Theory and design (Wiley-Interscience, 2000), p. 259
Chang, T.K., Langley, R.J., Parker, E., IEEE Microw. Guid. Wave Lett. 3, 387 (1993) CrossRef
Philips, B., Parker, E.A., Langley, R.J., Electron. Lett. 31, 1 (1995) CrossRef
Chang, T.K., Langley, R.J., Parker, E.A., IEE Proc. Microw. Antennas Propag. 143, 62 (1996) CrossRef
Vardaxoglou, J.C., Electron. Lett. 32, 2345 (1996) CrossRef
Cahill, B.M., Parker, E.A., Electron. Lett. 37, 244 (2001) CrossRef
Kiani, G.I., Ford, K.L., Esselle, K.P., Weily, A.R., Panagamuwa, C., Batchelor, J.C., Microw. Opt. Technol. Lett. 50, 2149 (2008) CrossRef
D.A. Whelan, J. Fraschilla, B.M. Pierce, Ferro-electric frequency selective surface radome, United States Patent 5600325 (1997)
W.S. Arceneaux, R.D. Akins, W.B. May, Absorptive/ transmissive radome, United States Patent 5400043 (1995)
Pendry, J.B., Holden, A., Stewart, W., Youngs, I., Phys. Rev. Lett. 76, 4773 (1996) CrossRef
de Lustrac, A., Brillat, T., Gadot, F., Akmansoy, E., Opt. Quant. Electron. 34, 265 (2002) CrossRef
Microstripes, Microstripes Reference Manual Release 7.0, FLOMERICS Ltd., 2005
S. Haché, S.N. Burokur, F. Gadot, P. Cailleu, G.-P. Piau, A. de Lustrac, Proc. Loughborough Antennas and Propagation Conference (LAPC 2007), Loughborough, UK, 2007, p. 305