Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-22T12:53:08.788Z Has data issue: false hasContentIssue false

Power balance at a copper electrode submitted to a non-stationary electric arc in air. Measurement of the amount of liquid metal created and modeling of the heating

Published online by Cambridge University Press:  05 June 2014

Romaric Landfried*
Affiliation:
Laboratoire de Génie Electrique de Paris, CNRS (UMR 8507) – SUPELEC – Université Paris 6 et Paris 11, 11 rue Joliot Curie – Plateau de Moulon, 91192 Gif-sur-Yvette, France
Thierry Leblanc
Affiliation:
Laboratoire de Génie Electrique de Paris, CNRS (UMR 8507) – SUPELEC – Université Paris 6 et Paris 11, 11 rue Joliot Curie – Plateau de Moulon, 91192 Gif-sur-Yvette, France
Philippe Testé
Affiliation:
Laboratoire de Génie Electrique de Paris, CNRS (UMR 8507) – SUPELEC – Université Paris 6 et Paris 11, 11 rue Joliot Curie – Plateau de Moulon, 91192 Gif-sur-Yvette, France
Get access

Abstract

In this paper, a measurement of the total amount of liquid metal created by an electric arc in air is made for copper anodes and cathodes. This amount is compared with usual erosion for the same experimental conditions for various values of the electrode gap (3–10 mm). It appears that the amount of liquid is ten times greater than the erosion for copper cathodes and may be fifty times greater for copper anodes. A method using experimental results and a numerical simulation of the thermal phenomena occurring in the electrode during the arc heating is then used to assess the characteristics of the power flux brought by the electric arc to the copper electrodes. It was found that about 80% of the energy received by the electrodes was conducted in the solid phase and that about 20% of this energy was used to melt or vaporize the electrode material. The power surface density brought to the electrodes was found in the range 4.6 × 108–1.9 × 109 W/m2 for the cathode and in the range 6.4 × 108–1.1 × 1010 W/m2 for the anode.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

McBride, J.W., Witter, G.J., Proceedings of the IEEE Holm Conference Montreal, 2001, pp. 7381
McBride, J.W., Cross, K.J., Sharkh, S.M., IEEE Trans. CPMT 19, 87 (1996)
Tuma, D.T., Chen, C.L., Davies, D.K., J. Appl. Phys. 49, 3821 (1978)CrossRef
Gray, E.W., Pharney, J.R., J. Appl. Phys. 45, 667 (1974)CrossRef
Teste, Ph., Andlauer, R., Leblanc, T., Eur. Phys. J. Appl. Phys. 55, 10802 (2011)CrossRef
Chabrerie, J.-P., Boyer, L., Proceedings of the 13th Int. Conference Electrical Contact Phenomena, Lausanne, 1986, pp. 96100Google Scholar
Haidar, J., Ph.D. thesis, University of Paris 6, 1989
Gouega, A.M., Teste, Ph., Andlauer, R., Leblanc, T., Chabrerie, J.-P., Eur. Phys. J. Appl. Phys. 11, 111 (2000)CrossRef
El Bayda, H., Ph.D. thesis, Université Paul Sabatier, 2011
El Bayda, H., Valensi, F., Masquère, M., Gleizes, A., IEEE Trans. Dielectr. Electr. Insul. 20, 19 (2013)CrossRef
Reece, M.P., Proc. Inst. Electr. Eng. UK 110, 793 (1963)CrossRef
Rondeel, W.G.J., J. Phys. D: Appl. Phys. 6, 1705 (1973)CrossRef
Yokomizu, Y., Matsumura, T., Henmi, R., Kito, Y., J. Phys. D: Appl. Phys. 29, 1260 (1996)CrossRef
Agarwal, M.S., Holmes, R., J. Phys. D: Appl. Phys. 17, 757 (1984)CrossRef
Teste, Ph., Ph.D. thesis, Université Pierre et Marie Curie, Paris, 1994
Rieder, W., Z. Phys. 146, 629 (1956)CrossRef
Landfried, R., Leblanc, T., Andlauer, R., Teste, Ph., Eur. Phys. J. Appl. Phys. 56, 1 (2011)CrossRef
Landfried, R., Leblanc, T., Kirkpatrick, M., Teste, Ph., IEEE Trans. Plasma Sci. 40, 1205 (2012)CrossRef
Marotta, A., Sharakhovsky, L.I., IEEE Trans. Plasma Sci. 25, 905 (1997)CrossRef
Marotta, A., Sharakhovsky, L.I., Borisyuk, V.N., J. Phys. D: Appl. Phys. 30, 2018 (1997)
Cobine, J.D., Burger, E.E., J. Appl. Phys. 26, 895 (1955)CrossRef
Devautour, J., Chabrerie, J.-P., Teste, Ph., Journal de Physique III 3, 1157 (1993)CrossRef
Salihou, H., Abbaoui, M., Lefort, A., Auby, R., J. Phys. D: Appl. Phys. 28, 1883 (1995)CrossRef
Teste, Ph., Leblanc, T., Rossignol, J., Andlauer, R., Plasma Sources Sci. Technol. 17, 35001 (2008)CrossRef
Rossignol, J., Ph.D. thesis (Université B. Pascal, Clermont-Fd, 2001)
Coulombe, S., Meunier, J.L., Plasma Sources Sci. Technol. 6, 508 (1997)CrossRef
Coulombe, S., Meunier, J.L., IEEE Trans. Plasma Sci. 25, 913 (1997)CrossRef
Teste, Ph., Rossignol, J., J. High Temp. Mater. Process. 12, 43 (2008)
Isanger, C., Secker, P.E., J. Phys. D: Appl. Phys. 4, 1940 (1971)CrossRef
Nachtigall, K.P., Mentel, J., IEEE Trans. Plasma Sci. 19, 947 (1991)CrossRef
Guile, A.E., J. Phys. D: Appl. Phys. 8, 663 (1975)CrossRef
Szente, R.N., Drouet, M.G., Munz, R.J.J., J. Appl. Phys. 69, 1263 (1991)CrossRef
Hsu, K.C., Etemadi, K., Pfender, E., J. Appl. Phys. 54, 1293 (1983)CrossRef
Vogel, N., Jüttner, B., J. Phys. D: Appl. Phys. 24, 922 (1991)CrossRef
Devautour, J., Ph.D. thesis (Université Pierre et Marie Curie, Paris, 1992)