Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T06:23:13.259Z Has data issue: false hasContentIssue false

A plasmonic splitter with flexible power splitting ratio at optical fiber communication waveband

Published online by Cambridge University Press:  10 October 2014

Ting Zhong
Affiliation:
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, P.R. China School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P.R. China
Peilin Lang*
Affiliation:
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, P.R. China School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P.R. China
Xi Chen
Affiliation:
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, P.R. China School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P.R. China
Gaoyan Duan
Affiliation:
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, P.R. China School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P.R. China
Li Yu
Affiliation:
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, P.R. China School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P.R. China
Jinghua Xiao
Affiliation:
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, P.R. China School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P.R. China
Get access

Abstract

We present a plasmonic splitter based on metal-insulator-metal (MIM) structure. This splitter consists of two parallel waveguides and two resonators. One resonator is a ring tangentially connected with the two waveguides, and the other resonator is a semi-ring directly connected to the lower waveguide. The finite-difference time-domain (FDTD) method is used to numerically analyze the transmittance spectra of the splitter. The results show that this splitter is a beam splitter when the wavelength of the incident wave is around 1355 nm or 1553 nm. This splitter can also be regarded as a power splitter. To our knowledge, this is the first designed surface plasmon polaritons (SPPs) splitter which utilize both the communication wavelengths at around 1310 nm and 1550 nm. This characteristics show potential applications in future optical circuits.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Yan, C.C., Zhang, D.H., Li, D.D., J. Appl. Phys. 109, 063105 (2011)CrossRef
Zhang, S.P., Wei, H., Bao, K., Håkanson, U., Halas, N.J., Nordlander, P., Xu, H.X., Phys. Rev. Lett. 107, 096801 (2011)CrossRef
Hosseini, A., Massoud, Y., Appl. Phys. Lett. 90, 181102 (2007)CrossRef
Xiao, S., Liu, L., Qiu, M., Opt. Express 14, 2932 (2006)CrossRef
Barnes, W.L., Dereux, A., Ebbesen, T.W., Nature 424, 824 (2003)CrossRef
Pile, D.F.P., Ogawa, T., Gramotnev, D.K., Matsuzaki, Y., Vernon, K.C., Yamaguchi, K., Okamoto, T., Haraguchi, M., Fukui, M., Appl. Phys. Lett. 87, 261114 (2005)CrossRef
Veronis, G., Fan, S., Appl. Phys. Lett. 87, 131102 (2005)CrossRef
Berini, P., Opt. Express 14, 13030 (2006)CrossRef
Lee, T., Gray, S., Opt. Express 13, 9652 (2005)CrossRef
Gao, H., Shi, H., Wang, C., Du, C., Luo, X., Deng, Q., Lv, Y., Lin, X., Yao, H., Opt. Express 13, 10795 (2005)CrossRef
Wahsheh, R.A., Lu, Z., Abushagur, M.A.G., Opt. Express 17, 19033 (2009)CrossRef
Lu, H., Liu, X., Mao, D., Wang, L., Gong, Y., Opt. Express 18, 17922 (2010)CrossRef
Gan, Q., Bartoli, F.J., Opt. Lett. 35, 4181 (2010)CrossRef
Zhou, Y.J., Jiang, Q., Cui, T.J., Opt. Express 19, 5260 (2011)CrossRef
Lopez-Tejeira, F., Rodrigo, Sergio G., Martin-Moreno, L., Garcia-Vidal, F.J., Devaux, E., Ebbesen, T.W., Krenn, J.R., Radko, I.P., Bozhevolnyi, S.I., Gonzalez, M.U., Weeber, J.C., Dereux, A., Nature Phys. 3, 324 (2007)CrossRef
He, M.-D., Liu, J.-Q., Wang, K.-J., Wang, X.-J., Gong, Z.-Q., Opt. Commun. 285, 4588 (2012)CrossRef
Guo, Y.H., Yan, L.Y., Pan, W., Luo, B., Wen, K.H., Guo, Z., Li, H.Y., Luo, X.G., Opt. Express 19, 13831 (2011)CrossRef
He, M.-D., Liu, J.-Q., Gong, Z.-Q., Luo, Y.F., Chen, X., Lu, W., Opt. Commun. 283, 1784 (2010)CrossRef
Xiang, D., Li, W.J., J. Mod. Opt. 61, 222 (2014)CrossRef
Dionne, J.A., Sweatlock, L.A., Atwater, H.A., Polman, A., Phys. Rev. B 73, 035407 (2006)CrossRef
Rakic, A.D., Djurisic, A.B., Elazar, J.M., Majewski, M.L., Appl. Opt. 37, 5271 (1998)CrossRef
Pannipitiya, A., Rukhlenko, I.D., Premaratne, M., Hattori, H.T., Agrawal, G.P., Opt. Express 18, 6191 (2010)CrossRef
Wang, T.B., Wen, X.W., Yin, C.P., Wang, H.Z., Opt. Express 17, 24096 (2009)CrossRef
Wolff, I., Knoppik, N., Electron. Lett. 7, 779 (1971)CrossRef
Economou, E.N., Phys. Rev. 182, 539 (1969)CrossRef
Tao, J., Huang, X.G., Lin, X., Chen, J., Zhang, Q., Jin, X., J. Opt. Soc. Am. B 27, 323 (2010)CrossRef
Hu, F.F., Yi, H.X., Zhou, Z.P., Opt. Express 19, 4848 (2011)CrossRef
Chen, Z., Yu, L., Wang, L.L., Zhao, Y.F., Duan, G.Y., Xiao, J.H., Chin. Phys. Lett. 30, 054212 (2013)CrossRef
Zhu, Q., Wang, D., Ye, J., Zhang, Y., Opt. Commun. 283, 1542 (2010)CrossRef
Maier, S., Nat. Phys. 3, 301 (2007)CrossRef
Chen, X., Zhang, R., Lang, P.L., Yang, H.C., Zhong, T., Zhong, K., J. Mod. Opt. 61, 697 (2014)