Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-28T15:21:54.268Z Has data issue: false hasContentIssue false

Photogenerated charge carrier recombination processes in CdS/P3OT solar cells: effect of structural and optoelectronic properties of CdS films

Published online by Cambridge University Press:  18 August 2011

H. Cortina
Affiliation:
Centro de Investigación en Energía, UNAM, Priv. Xochicalco S/N, Temixco 62580, Morelos, Mexico
E. Pineda
Affiliation:
Centro de Investigación en Energía, UNAM, Priv. Xochicalco S/N, Temixco 62580, Morelos, Mexico
J. Campos
Affiliation:
Centro de Investigación en Energía, UNAM, Priv. Xochicalco S/N, Temixco 62580, Morelos, Mexico
M.E. Nicho
Affiliation:
Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, Cuernavaca, Morelos, Mexico
H. Hu*
Affiliation:
Centro de Investigación en Energía, UNAM, Priv. Xochicalco S/N, Temixco 62580, Morelos, Mexico
*
Get access

Abstract

Research and development activities in organic solar cells have been intensified in the last two decades, and the reported energy conversion efficiency in small cell samples is rapidly increased. However, the relation between cell performance and material preparation conditions is not fully understood. In this work charge carrier recombination processes in hybrid poly-3-octylthiophene (P3OT)/cadmium sulfide (CdS) photovoltaic cells were analyzed as a function of structural and optoelectronic properties of chemical bath deposited CdS thin films. The temperature of the bath solution varied between 60 and 80 °C, and the deposition time from 1 to 3 h. Charge carrier recombination times in CdS films were measured with photoconductance decay technique, whereas the same time in P3OT films was estimated by Time-of-Flight method. Charge carrier recombination rates at CdS/P3OT interface were determined by transient photovoltage technique. It is found that CdS films grown at lower solution temperature (60 °C) give a higher charge carrier recombination rate at CdS/P3OT interface and larger short-circuit current density and energy conversion efficiency values in the corresponding solar cells, in comparison with the 80 °C deposited ones. This improvement could come from the reduction of charge carrier trap density inside grains as well as at grain boundaries in lower temperature deposited CdS films.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kim, J.Y., Lee, K., Coates, N.E., Moses, D., Nguyen, T.-Q., Dante, M., Heeger, A.J., Science 317, 222 (2007)CrossRef
Chen, H.-Y., Zhang, S., Liang, Y., Yang, G., Yang, Y., Yu, L., Wu, Y., Li, G., Nat. Photon. 3, 649 (2009)CrossRef
Mayer, A.C., Scully, S.R., Hardin, B.E., Rowell, M.W., McGehee, M.D., Mater. Today 10, 28 (2007)CrossRef
Lee, S.B., Yoshino, K., Park, J.Y., Park, Y.W., Phys. Rev. B 61, 2151 (2000)CrossRef
Shuttle, C.G., O’Regan, B., Ballantyne, A.M., Nelson, J., Bradley, D.D.C., Durrant, J.R., Phys. Rev. B 78, 113201 (2008)CrossRef
Yang, F., Shtein, M., Forrest, S.R., Nanomaterials 4, 37 (2005)
Granström, M., Petritsch, K., Arias, A.C., Lux, A., Andersson, M.R., Friend, R.H., Nature 395, 257 (1998)CrossRef
Kekuda, D., Huang, J.-H., Ho, K.-C., Chu, C.-W., J. Phys. Chem. C 114, 2764 (2010)CrossRef
Gϋnes, S., Sariciftci, N.S., Inorg. Chim. Acta 361, 581 (2008)CrossRef
Huynh, W.U., Dittmer, J.J., Alivisatos, A.P., Science 295, 2425 (2002)CrossRef
Liao, H.-C., Chen, S.-Y., Liu, D.-M., Macromolecules 42, 6558 (2009)CrossRef
Ravirajan, P., Haque, S.A., Durrant, J.R., Bradley, D.D.C., Nelson, J., Adv. Funct. Mater. 15, 609 (2005)CrossRef
Liu, Y., Summers, M.A., Edder, C., Fréchet, J.M.J., McGehee, M.D., Adv. Mater. 17, 2960 (2005)CrossRef
Gowrishankar, V., Scully, S.R., McGehee, M.D., Appl. Phys. Lett. 89, 252102 (2006)CrossRef
Itoh, E., Takamizawa, Y., Miyairi, K., Jpn. J. Appl. Phys. 47, 509 (2008)CrossRef
Salinas, O.H., López-Mata, C., Hu, H., Nicho, M.E., Sol. Energy Mater. Sol. Cells 90, 2421 (2006)CrossRef
Hu, H., Kung, S.-C., Yang, L.-M., Nicho, M.E., Penner, R.M., Sol. Energy Mater. Sol. Cells 93, 51 (2009)CrossRef
Arenas, M.C., Mendoza, N., Cortina, H., Nicho, M.E., Hu, H., Sol. Energy Mater. Sol. Cells 94, 29 (2010)CrossRef
Li, G., Shrotriya, V., Yao, Y., Yang, Y., J. Appl. Phys. 98, 043704 (2005)CrossRef
Kim, Y., Choulis, S.A., Nelson, J., Bradley, D.D.C., Cook, S., Durrant, J.R., Appl. Phys. Lett. 86, 063502 (2005)CrossRef
Mihailetchi, V.D., Xie, H., de Boer, B., Popescu, L.M., Hummelen, J.C., Blom, P.W.M., Koster, L.J.A., Appl. Phys. Lett. 89, 012107 (2006)CrossRef
Li, G., Yao, Y., Yan, H., Shrotriya, V., Yang, G., Yang, Y., Adv. Funct. Mater. 17, 1636 (2007)CrossRef
Sharma, G.D., Suresh, P., Sharma, S.S., Vijay, Y.K., Mikroyannidis, J.A., Appl. Mater. Interfaces 2, 504 (2010)CrossRef
Nair, P.K., Nair, M.T.S., Arenas, O.L., Peña, Y., Castillo, A., Ayala, I.T., Gomez-Daza, O., Sánchez, A., Campos, J., Hu, H., Súarez, R., Rincón, M., Sol. Energy Mater. Sol. Cells 52, 313 (1998)CrossRef
Nicho, M.E., Hu, H., López-Mata, C., Escalante, J., Sol. Energy Mater. Sol. Cells 82, 105 (2004)CrossRef
López-Mata, C., Nicho, M.E., Hu, H., Cadenas-Pliego, G., García-Hernández, E., Thin Solid Films 490, 189 (2005)CrossRef
Schroder, D.K., Semiconductor Material and Device Characterization (John Wiley & Sons, New York, 1998)Google Scholar
Liu, C.-Y., Chen, S.-A., Macromolecular Rapid Commun. 28, 1743 (2007)CrossRef
O’Regan, B.C., Lenzmann, F., J. Phys. Chem. B 108, 4342 (2004)CrossRef
Nelson, J., The Physics of Solar Cells (Imperial College Press, London, 2003)CrossRefGoogle Scholar
Ahrenkiel, R.K., Levi, D.H., Johnston, S., Song, W., Mao, D., Fischer, A., NREL/CP-530-22950UC Category: 1250, 1997 Google Scholar
Soci, C., Huang, I.-W., Moses, D., Zhu, Z., Waller, D., Guadiana, R., Brabec, C.J., Heeger, A.J., Adv. Funct. Mater. 17, 632 (2007)CrossRef
Goh, C., Scully, S.R., McGehee, M.D., J. Appl. Phys. 101, 114503 (2007)CrossRef
Shuttle, C.G., O’Regan, B., Ballantyne, A.M., Nelson, J., Bradley, D.D.C., de Mello, J., Durrant, J.R., Appl. Phys. Lett. 92, 093311 (2008)CrossRef