Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-30T19:18:26.230Z Has data issue: false hasContentIssue false

Phase segregation in Pb:GeSbTe chalcogenide system

Published online by Cambridge University Press:  19 December 2007

J. Kumar
Affiliation:
Semiconductors Laboratory, Department of Applied Physics, Guru Nanak Dev University, Amritsar-143005, India
M. Ahmad
Affiliation:
Semiconductors Laboratory, Department of Applied Physics, Guru Nanak Dev University, Amritsar-143005, India
R. Chander
Affiliation:
Semiconductors Laboratory, Department of Applied Physics, Guru Nanak Dev University, Amritsar-143005, India
R. Thangaraj*
Affiliation:
Semiconductors Laboratory, Department of Applied Physics, Guru Nanak Dev University, Amritsar-143005, India
T. S. Sathiaraj
Affiliation:
Department of Physics, University of Botswana, Botswana
Get access

Abstract

Effect of Pb substitution on the amorphous-crystalline transformation temperature, optical band gap and crystalline structure of Ge2Sb2Te5 has been studied. In Pb:GeSbTe chalcogenide films prepared by thermal evaporation, an amorphous to crystallization transition is observed at 124, 129, 136 and 138 °C in Pb0Ge20Sb24Te56, Pb1.6Ge19Sb26Te54, Pb3Ge17Sb28Te53 and Pb5Ge12Sb28Te55 respectively. XRD investigations of annealed samples reveal that Pb substitution retains NaCl type crystalline structure of GST but expands the lattice due to large atomic radii. The increase in amorphous-crystalline transformation temperature is followed with the increase in phase segregation. The optical gap shows marginal variations with composition.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bureau, B., Zhang, X.H., Smektala, F., Adam, J.L., Troles, J., Ma, H., Pledel, C.B., Lucas, J., Lucas, P., Coq, D.L., Riley, M.R., Simmons, J.H., J. Non-Cryst. Solids 345, 276 (2004) CrossRef
Seddon, A., J. Non-Cryst. Solids 184, 44 (1995) CrossRef
Adam, J.L., J. Non-Cryst. Solids 287, 401 (2001) CrossRef
Ovshinsky, S.R., Phys. Rev. Lett. 21, 20 (1968) CrossRef
Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N., J. Appl. Phys. 69, 2849 (1991) CrossRef
Gu, S., Hou, L., Zhao, Q., Huang, R., Chin. Opt. Lett. 1, 716 (2003)
Ryu, S.W., Oh, J.H., Choi, B.J., Hwang, S.V., Hong, S.K., Hwang, C.S., Kim, H.J., Electrochem. Solid-State Lett. 9, G259 (2006) CrossRef
Kolobov, A.V., Fons, P., Tominaga, J., Frenkel, A.I., Ankudinov, A.L., Yannopoulous, S.N., Andrikopoulos, K.S., Uruga, T., Jpn J. Appl. Phys. 44, 3345 (2005) CrossRef
Popescu, M., J. Ovonic Res. 2, 45 (2006)
Kolobov, A.V., Fons, P., Frenkel, A.I., Ankudinov, A.L., Tominaga, J., Uruga, T., Nature Mater. 3, 703 (2004) CrossRef
Lin, X.J., Bo, L., Tang, S.Z., Lin, F.S., Bomy, C., Chin. Phys. Lett. 22, 934 (2005) CrossRef
Wang, K., Wamwangi, D., Ziegler, S., Steimer, C., Wutting, M., J. Appl. Phys. 96, 5557 (2004) CrossRef
Wang, K., Steimer, C., Wamwangi, D., Ziegler, S., Wutting, M., Appl. Phys. A 80, 1611 (2005) CrossRef
Cheng, X., Bo, L., Tang, S.Z., Lin, F.S., Bomy, C., Chin. Phys. Lett. 22, 2929 (2005) CrossRef
Kamboj, M.S., Thangaraj, R., Eur. Phys. J. Appl. Phys. 24, 33 (2003) CrossRef
Wahab, L.A., Amer, H.H., Egypt. J. Solids 28, 255 (2005)
Abkowitz, M., Polym. Eng. Sci. 24, 1149 (1984) CrossRef
G. Lucovsky, F.L. Galeener, R.H. Geils, R.C. Keezer, The Structure of Non-Crystalline Materials (Taylor and Francis, London, 1977)
J.A. Kerr, CRC Handbook of Chemistry and Physics (CRC Press, Florida USA, 2000)
Friedrich, I., Wedenhof, V., Njoroge, W., Franz, P., Wutting, M., J. Appl. Phys. 87, 4130 (2000) CrossRef
Fang, M., Li, Q., Gan, F., Chinese Opt. Lett. 2, 177 (2004)
J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, London, 1974)
Dongol, M., Egypt. J. Sol. 23, 297 (2000)
Dhar, S.N., Desai, C.F., Phil. Mag. Lett. 82, 581 (2002) CrossRef