Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T16:56:33.482Z Has data issue: false hasContentIssue false

Numerical investigation of the effect of optical pulse position on the response of an unbiased BGMSM photodetector using ADI method

Published online by Cambridge University Press:  16 July 2012

V. Mosallanejad
Affiliation:
Department of Photonics, Kerman Graduate University of Technology, Kerman, Iran
H.R. Mashayekhi*
Affiliation:
Physics Group, Guilan University, Rasht, Iran
E. Menbari
Affiliation:
Physics Group, Guilan University, Rasht, Iran
Get access

Abstract

A numerical method for describing the electrical response of a Back-Gated Metal-Semiconductor- Metal Photodetector (BGMSM-PD) to an impinging optical pulse on the active region of the device is presented. In the absence of external voltage, the main mechanism for the transport of photo-generated carriers is diffusion mechanism. Two nonlinear differential equations describe the behavior of photocarriers’ densities in the device medium with respect to time and position. Having linearized the parabolic partial differential equations, the time evolution of carrier densities is calculated using the Alternating Direction Implicit (ADI) method. The numerical results show good agreement with the experimental data. Both experimental and numerical findings confirm that the electrical response of the device to optical pulses with spatial FWHM comparable with the width of the active region is dependent on pulse position on the active region. This feature of the device makes it to be a good candidate as position sensors in places where micro-positioning is required.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Vickers, A., Hassan, M., Mashakekhi, H., Griguoli, A., Hopkinson, M., Appl. Phys. Lett. 68, 815 (1996)CrossRef
Hurd, C.M., McKinnon, W.R., J. Appl. Phys. 80, 5449 (1996)CrossRef
Greger, E., Reingruber, K., Riel, P., Dohler, G.H., Rosenzweig, J., Ludwig, M., Appl. Phys. Lett. 65, 2223 (1994)CrossRef
Vickers, A.J., Mashayekhi, H.R., Aiyarak, P., Oriato, D., Turkish J. Phys. 23, 649 (1999)
Mashayekhi, H.R., Ph.D. thesis, Department of Physics, University of Essex, Essex, 1999
Habibpoor, A., Mashayekhi, H., Eur. Phys. J. Appl. Phys. 55, 10502 (2011)CrossRef
Burm, J., Litvin, K., Woodard, D., Schaff, W., Mandeville, P., Jaspan, M., Gitin, M., Eastman, L., IEEE J. Quantum Electron. 31, 1504 (1995)CrossRef
Wang, J., Lee, S., Sensors 11, 696 (2011)CrossRef
Kim, J.H., Griem, H.T., Friedman, R.A., Chan, E.Y., Ray, S., IEEE Photon. Technol. Lett. 4, 1241 (1992)CrossRef
Yuang, R.H., Shieh, H.C., Chien, Y.J., Chan, Y.J., Chyi, J.I., Lin, W., Tu, Y.K., IEEE Photon. Technol. Lett. 7, 914 (1995)CrossRef
Hurd, C.M., McKinnon, W.R., J. Appl. Phys. 78, 5756 (1995)CrossRef
Chou, S.Y., Liu, M.Y., IEEE J. Quantum Electron. 28, 2358 (1992)CrossRef
Vickers, A.J., Hassan, M.A., Mashakekhi, H.R., Griguoli, A., Hopkinson, M., Appl. Phys. Lett. 68, 815 (1996)CrossRef
Salem, A.F., Brennan, K.F., IEEE J. Quantum Electron. 31, 944 (1995)CrossRef
Selberherr, S., Analysis and Simulation of Semiconductor Devices (Springer-Verlag, Wien, New York, 1984)CrossRefGoogle Scholar
Sze, S.M., Physics of Semiconductor Devices, 2nd ed. (John Wiley and Sons, New York, 1981), p. 50Google Scholar
Bank, R.E., Rose, D.J., Fichtner, W., IEEE Trans. Electron Devices 30, 1031 (1983)CrossRef
Hurst, S., Microelectron. J. 25, 77 (1994)
Krishnamurthy, S., Chen, A.B., Sher, A., J. Appl. Phys. 80, 4045 (1996)CrossRef
Yang, W., Cao, W., Chung, T.S., Morris, J., Applied Numerical Methods Using MATLAB (Wiley Online Library, Hoboken, New Jersey, 2005)CrossRefGoogle Scholar
Gu, Y., Liao, W., Zhu, J., J. Comput. Appl. Math. 155, 1 (2003)CrossRef
Ramos, J., Appl. Math. Comput. 94, 17 (1998)
Diels, J.C., Rudolph, W., Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic Press, Springer, New York, 2006)Google Scholar