Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-13T08:34:54.788Z Has data issue: false hasContentIssue false

A new calculation approach for dielectric space charge characterization from nano to macro-scales by the thermal step method

Published online by Cambridge University Press:  02 September 2010

E. Belgaroui*
Affiliation:
Laboratoire des Matériaux Composites Céramiques et Polymères (LaMaCoP), Faculté des Sciences de Sfax, BP 805, Sfax, 3000, Tunisia Institut Préparatoire aux Études d'Ingénieurs de Sfax, Route Menzel Chaker km 0.5, BP 1172, 3000 Sfax, Tunisia
A. Kallel
Affiliation:
Laboratoire des Matériaux Composites Céramiques et Polymères (LaMaCoP), Faculté des Sciences de Sfax, BP 805, Sfax, 3000, Tunisia
Get access

Abstract

In this paper, a new calculation approach is developed and applied, for the first time, to different dielectric scales using the thermal step method (TSM). The thermal aspect of the approach concerns insulating materials from nano to macro-scales. The theoretical approach is based on the ballistic-diffuse transport taking into account the relaxation time of heat phonons and their effects on the trapped space charges. These effects are revealed on the temporal evolution of the induced image charges that constitute the electrical signal of the thermal step method. The temperature distributions and the TSM induced image charges are obtained by applying the numerical finite element method, the Newmark direct integration, the mean value theorem and the composite Simpson approximation. In a first step, the results of the temperature distributions are validated with those obtained by Boltzmann and Chen models for nano-polyethylene sample. In a second step, our approach is validated with TSM previous works using the Fourier's model for space charge characterizations in the micro and macro-dielectrics. The validated results of the TSM induced image charges for micro and macro-scales show good agreements, and prove that our approach is a consistent tool to be applied in space charge characterizations for different dielectric scales.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Toureille, A., Revue Gén. Electr. 8, 15 (1991)
Li, Y., Takada, T., J. Phys. D: Appl. Phys. 25, 704 (1992) CrossRef
Abou-Dakka, M., Bamji, S.S., Bulinski, A.T., IEEE Trans. Dielectr. Electr. Insul. 4, 314 (1997) CrossRef
E. Belgaroui, Y. Mlik, A. Toureille, Profils de température et champ électrique résiduel dans les diélectriques, in Le Premier Colloque de Recherche Matériaux Diélectriques, Mahdia, Tunisia, 2000
Belgaroui, E., Guermazi, H., Agnel, S., Mlik, Y., Toureille, A., Eur. Phys. J. Appl. Phys. 23, 63 (2003) CrossRef
Notingher Jr, P. ., S. Agnel, O. Fruchier, A. Toureille, B. Rousset, J.-L. Sanchez, J. Optoelectr. Adv. Mater. 6, 1089 (2004)
Matoussi, A., Dhouib, A., Fakhfakh, Z., Microelectr. Eng. 86, 425 (2009) CrossRef
G. Chen, Nano-scale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford University Press, New York, 2005)
Chen, G., Phys. Rev. Lett. 86, 2297 (2001) CrossRef
Chen, G., J. Heat Transfer 12, 320 (2002) CrossRef
J.N. Reddy, An Introduction to the Finite Element Method, edited by T.M. Slaughter, S. Hazlett, Halliday Lithograph Corporation, United States of America (McGraw-Hill, 1984)
L. Rade, B. Westergren, Mathematics Handbook for Science and Engineering, 4th edn. (Springer-Verlag, Berlin, 1999)
W. Yin, J. Tariaka, D.H. Damon, Proc. 4th Int. Conf. on Conduction and Breakdown in Solid Dielectrics, 1992, pp. 32–36, DOI: 10.1109/ICSD.1992.224955 CrossRef