Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-30T11:08:43.430Z Has data issue: false hasContentIssue false

Neural harmonic detection approaches for FPGA area efficient implementation

Published online by Cambridge University Press:  14 November 2011

S.R.N. Dzondé*
Affiliation:
Institut d’Électronique du Solide et des Systèmes (InESS), Université de Strasbourg/CNRS, UMR 7163, 23 rue du Lœss, 67037 Strasbourg Cedex, Francehttp://www-iness.c-strasbourg.Fr Laboratoire d’Électronique, Électrotechnique, Automatique et Télécommunication (LEEAT), Université de Douala, B.P. 8698 Douala, Cameroun
C.-H. Kom
Affiliation:
Laboratoire d’Électronique, Électrotechnique, Automatique et Télécommunication (LEEAT), Université de Douala, B.P. 8698 Douala, Cameroun
H. Berviller
Affiliation:
Institut d’Électronique du Solide et des Systèmes (InESS), Université de Strasbourg/CNRS, UMR 7163, 23 rue du Lœss, 67037 Strasbourg Cedex, Francehttp://www-iness.c-strasbourg.Fr
J.-P. Blondé
Affiliation:
Institut d’Électronique du Solide et des Systèmes (InESS), Université de Strasbourg/CNRS, UMR 7163, 23 rue du Lœss, 67037 Strasbourg Cedex, Francehttp://www-iness.c-strasbourg.Fr
D. Flieller
Affiliation:
Institut National Supérieur des Sciences Appliquées de Strasbourg, Laboratoire GREEN (UMR 7037, CNRS) Antenne de Strasbourg, 24 Bd de la Victoire, 67084 Strasbourg Cedex, France
M. Kom
Affiliation:
École Nationale Supérieure Polytechnique, Université de Yaoundé I, BP 8390 Yaoundé, Cameroun
F. Braun
Affiliation:
Institut d’Électronique du Solide et des Systèmes (InESS), Université de Strasbourg/CNRS, UMR 7163, 23 rue du Lœss, 67037 Strasbourg Cedex, Francehttp://www-iness.c-strasbourg.Fr
Get access

Abstract

This paper deals with new neural networks based harmonics detection approaches to minimize hardware resources needed for FPGA implementation. A simple type of neural network called Adaline is used to build an intelligent Active Power Filter control unit for harmonics current elimination and reactive power compensation. For this purpose, two different approaches called Improved Three-Monophase (ITM) and Two-Phase Flow (TPF) methods are proposed. The ITM method corresponds to a simplified structure of the three-monophase method whereas the TPF method derives from the Synchronous Reference Frame method. Indeed, for both proposed methods, only 50% of Adalines with regard to the original methods is used. The corresponding designs were implemented on a FPGA Stratix II platform through Altera DSP Builder® development tool. After analyzing those two methods with respect to performance and size criteria, a comparative study with the popular p-q and also the direct method is reported. From there, one can notice that the p-q is still the most powerful method for three-phase compensation but the TPF method is the fastest and the most compact in terms of size. An experimental result is shown to validate the feasibility of FPGA implementation of ANN-based harmonics extraction algorithms.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Vasquez, J.R., Salmeron, P., Prieto, J., Alcantara, F.J., in Proc. of 14th PSCC, Sevilla, 2002, s28, p. 06
Asiminoaei, L., Blaabjerg, F., Hansen, S., in Proc. of APEC’05 Austin, Texas, 2005, p. 635
Su, M., Li, D., Yang, W., Peng, H., in Proc. of 4th China-Japan Int. Workshop on ITCA, Hunan, 2005, p. 99
Moreno, V., Pigazo, A., Diego, R.I., in Proc. of 10th Int. Conf. on Harmonics and Quality of Power, Rio de Janeiro, Brazil, 2002, vol. 2, p. 490
Akagi, H., IEEE Trans. Ind. Appl. 32, 6 (1996)CrossRef
Herrera, R.S., Salmerón, P., Kim, H., IEEE Trans. Ind. Electron. 55, 1 (2008)CrossRef
Ould Abdeslam, D., Wira, P., Mercklé, J., Flieller, D., Chapuis, Y.A., IEEE Trans. Ind. Electron. 54, 1 (2007)
Bansal, R., Bhatti, T., Kothari, D., Int. J. Power Energy Syst. 23, 2 (2003)
Lin, H.C., IEEE Trans. Ind. Electron. 54, 1 (2008)
Han, Y., Khan, M., Yao, G., Zhou, L.-D., Chen, C., Simulation Modelling Practice and Theory 16, 1215 (2007)CrossRef
Widrow, B., Walach, E., Information and System Science Series (Prentice Hall Press, Upper Saddle River, NJ, 1996)Google Scholar
Shu, Z., Guo, Y., Lian, J., IEEE Trans. Ind. Electron. 55, 4 (2008)
Chapuis, Y.A., Blondé, J.P., Braun, F., in Proc. of EPE-PEMC, Riga, 2004, vol. 1, p. 134
Won, E., Nucl. Instrum. Methods 581, 816 (2007)CrossRef
Naoussi, S.R.D., Berviller, H., Blondé, J.-P, Kom, C.H., Braun, F., in Proc. of DASIP’08, Brussels, 2008, p. 270
Naoussi, S.R.D., Berviller, H., Blonde, J.-P., Braun, F., Kom, C.H., Kom, M., in Proc. of 13th Eur. Conf. on Power Electronics and Applications (EPE’09), Barcelona, 2009, CDROM
Chen, Y.J., Du Plessis, W.P., in Proc. of 6th IEEE Africon, George, South Africa, 2002, vol. 1, p. 337
Kim, S.S., Jung, S., Proc. of IEEE ICRA’04, New Orleans, 2004, vol. 5, p. 4639
Electromagnetic Compatibility (EMC) – Part 3-2: Limits – Limits for Harmonic Current Emissions (Equipment Input Current ≤16 A Per Phase), IEC 61000-3-2, 2005
Nguyen, N.K., Flieller, D., Wira, P., Ould Abdeslam, D., Proc. of 35th Ann. Conf. of the IEEE Industrial Electronics Society (IECON09), Porto, 2009, CD-ROM
Radzi, M.A.M., Rahim, N.A., IEEE Trans. Ind. Electron. 56, 5 (2009)CrossRef